Home
Class 12
MATHS
If x^(2)+y^(2)=t-(1)/(t)andx^(4)+y^(4)=t...

If `x^(2)+y^(2)=t-(1)/(t)andx^(4)+y^(4)=t^(2)+(1)/(t_(2)),` then `((dy)/(dx))_((1.1))` is…………

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \(\frac{dy}{dx}\) at the point (1, 1) given the equations: 1. \(x^2 + y^2 = t - \frac{1}{t}\) 2. \(x^4 + y^4 = t^2 + \frac{1}{t^2}\) ### Step-by-Step Solution: **Step 1: Write down the equations.** We have: \[ x^2 + y^2 = t - \frac{1}{t} \quad (1) \] \[ x^4 + y^4 = t^2 + \frac{1}{t^2} \quad (2) \] **Step 2: Square the first equation.** Squaring equation (1): \[ (x^2 + y^2)^2 = \left(t - \frac{1}{t}\right)^2 \] Expanding both sides: \[ x^4 + y^4 + 2x^2y^2 = t^2 - 2 + \frac{1}{t^2} \] **Step 3: Substitute equation (2) into the squared equation.** From equation (2), we know: \[ x^4 + y^4 = t^2 + \frac{1}{t^2} \] Substituting this into the expanded equation gives: \[ t^2 + \frac{1}{t^2} + 2x^2y^2 = t^2 - 2 + \frac{1}{t^2} \] **Step 4: Simplify the equation.** Cancelling \(t^2 + \frac{1}{t^2}\) from both sides: \[ 2x^2y^2 = -2 \] Dividing by 2: \[ x^2y^2 = -1 \] **Step 5: Solve for \(y^2\).** Rearranging gives: \[ y^2 = -\frac{1}{x^2} \] **Step 6: Differentiate both sides with respect to \(x\).** Differentiating: \[ \frac{d}{dx}(y^2) = \frac{d}{dx}\left(-\frac{1}{x^2}\right) \] Using the chain rule on the left: \[ 2y \frac{dy}{dx} = 2x^{-3} \] **Step 7: Solve for \(\frac{dy}{dx}\).** Rearranging gives: \[ \frac{dy}{dx} = \frac{x^{-3}}{y} \] **Step 8: Evaluate \(\frac{dy}{dx}\) at the point (1, 1).** Substituting \(x = 1\) and \(y = 1\): \[ \frac{dy}{dx} = \frac{1^{-3}}{1} = 1 \] Thus, the final answer is: \[ \frac{dy}{dx} \text{ at } (1, 1) = 1 \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|10 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Differentiation Exercise 5:|1 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

If x^2+y^2=t-1/t and x^4+y^4=t^2+1/(t^2) , then prove that (dy)/(dx)=1/(x^3y)

If x^2+y^2=(t+1/t) and x^4+y^4=t^2+1/t^2 , then x^3y(dy)/(dx)=

If x=(1-t^2)/(1+t^2) and y=(2at)/(1+t^2) , then (dy)/(dx)=

If x=(1-t^2)/(1+t^2) and y=(2t)/(1+t^2) ,then (dy)/(dx)=

If x=e^(-t^(2)), y=tan^(-1)(2t+1) , then (dy)/(dx)=

If x=e^(-t^(2)), y=tan^(-1)(2t+1) , then (dy)/(dx)=

If x=(2t)/(1+t^2) , y=(1-t^2)/(1+t^2) , then find (dy)/(dx) .

If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)) , then (dy)/(dx) is equal to

"If "x=(2t)/(1+t^(2)),y=(1-t^(2))/(1+t^(2))," then find "(dy)/(dx)" at "t=2.

If x^2+y^2=t-1/t and x^4+y^4=t^2+1/t^2, then x^3y (dy)/(dx)= (a) 0 (b) 1 (c) -1 (d) none of these