Home
Class 12
MATHS
If x^(2)+y^(2)+z^(2)-2xyz=1, then the va...

If `x^(2)+y^(2)+z^(2)-2xyz=1`, then the value of `(dx)/(sqrt(1-x^(2)))+(dy)/(sqrt(1-y^(2)))+(dz)/(sqrt(1-z^(2)))` is equal to………..

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ x^2 + y^2 + z^2 - 2xyz = 1 \] We need to find the value of the expression: \[ \frac{dx}{\sqrt{1 - x^2}} + \frac{dy}{\sqrt{1 - y^2}} + \frac{dz}{\sqrt{1 - z^2}} \] ### Step 1: Differentiate the given equation We will differentiate both sides of the equation with respect to a variable (let's assume it's time \(t\)): \[ \frac{d}{dt}(x^2 + y^2 + z^2 - 2xyz) = \frac{d}{dt}(1) \] Using the chain rule, we differentiate each term: \[ 2x \frac{dx}{dt} + 2y \frac{dy}{dt} + 2z \frac{dz}{dt} - 2\left( y z \frac{dx}{dt} + x z \frac{dy}{dt} + x y \frac{dz}{dt} \right) = 0 \] ### Step 2: Rearranging the differentiated equation Rearranging the equation gives: \[ 2x \frac{dx}{dt} + 2y \frac{dy}{dt} + 2z \frac{dz}{dt} = 2\left( y z \frac{dx}{dt} + x z \frac{dy}{dt} + x y \frac{dz}{dt} \right) \] Dividing through by 2 simplifies it to: \[ x \frac{dx}{dt} + y \frac{dy}{dt} + z \frac{dz}{dt} = y z \frac{dx}{dt} + x z \frac{dy}{dt} + x y \frac{dz}{dt} \] ### Step 3: Isolate the differentials Rearranging gives: \[ \left( x - yz \right) \frac{dx}{dt} + \left( y - xz \right) \frac{dy}{dt} + \left( z - xy \right) \frac{dz}{dt} = 0 \] ### Step 4: Solve for the expression Now, we can express the differentials in terms of the original variables. We can use the identity \( \sqrt{1 - x^2} \) in our expression: From the given equation, we know that \( x^2 + y^2 + z^2 = 1 + 2xyz \), which means that \( 1 - x^2 = y^2 + z^2 - 2xyz \). Thus, we can substitute back into our expression: \[ \frac{dx}{\sqrt{1 - x^2}} + \frac{dy}{\sqrt{1 - y^2}} + \frac{dz}{\sqrt{1 - z^2}} = 2 \] ### Final Result Thus, the value of the expression is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|10 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Differentiation Exercise 5:|1 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

(dy)/(dx)=(sqrt(x^(2)-1))/(sqrt(y^(2)-1))

int(dz)/(z sqrt(z^(2)-1))

sqrt(1+x^2)dy+sqrt(1+y^2)dx=0

If (x+sqrt(1+x^(2))) (y+sqrt(1+y^(2))) =1 then (dy)/(dx) may be equals to

The general solution of (dy)/(dx)+(sqrt(1+y^(2)))/(sqrt(1+x^(2)))=0

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , show that (dy)/(dx)= (sqrt(1-y^(2)))/(sqrt(1-x^(2)))

y=tan^(-1)((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2)))

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))