Home
Class 12
MATHS
If y is twice differentiable function of...

If y is twice differentiable function of x, then the expression `(1-x^(2)).(d^(2)y)/(dx^(2))-x(dy)/(dx)+y` by means of the transformation `x=sint` in terms of t is `(d^(2)y)/(dt^(2))+lambday`. Thus `lambda` is….

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to transform the given expression using the substitution \( x = \sin t \) and find the value of \( \lambda \) in the resulting equation. Here’s a step-by-step solution: ### Step 1: Write the original expression The original expression is given as: \[ (1 - x^2) \frac{d^2y}{dx^2} - x \frac{dy}{dx} + y \] ### Step 2: Substitute \( x = \sin t \) Using the substitution \( x = \sin t \), we can find \( dx \): \[ dx = \cos t \, dt \] ### Step 3: Express derivatives in terms of \( t \) We need to express \( \frac{dy}{dx} \) and \( \frac{d^2y}{dx^2} \) in terms of \( t \): - First, we find \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{\frac{dy}{dt}}{\cos t} \] - Next, we find \( \frac{d^2y}{dx^2} \): Using the chain rule: \[ \frac{d^2y}{dx^2} = \frac{d}{dx} \left( \frac{dy}{dx} \right) = \frac{d}{dt} \left( \frac{dy/dt}{\cos t} \right) \cdot \frac{dt}{dx} \] Since \( \frac{dt}{dx} = \frac{1}{\cos t} \): \[ \frac{d^2y}{dx^2} = \frac{d}{dt} \left( \frac{dy/dt}{\cos t} \right) \cdot \frac{1}{\cos t} \] ### Step 4: Differentiate \( \frac{dy}{dx} \) Using the product rule: \[ \frac{d}{dt} \left( \frac{dy}{dt} \cdot \frac{1}{\cos t} \right) = \frac{d^2y}{dt^2} \cdot \frac{1}{\cos t} - \frac{dy}{dt} \cdot \frac{\sin t}{\cos^2 t} \] Thus, \[ \frac{d^2y}{dx^2} = \left( \frac{d^2y}{dt^2} \cdot \frac{1}{\cos t} - \frac{dy}{dt} \cdot \frac{\sin t}{\cos^2 t} \right) \cdot \frac{1}{\cos t} \] ### Step 5: Substitute back into the original expression Now, substituting \( x = \sin t \) into the original expression: \[ (1 - \sin^2 t) \left( \frac{d^2y}{dt^2} \cdot \frac{1}{\cos^2 t} - \frac{dy}{dt} \cdot \frac{\sin t}{\cos^2 t} \right) - \sin t \cdot \frac{dy}{dt} \cdot \frac{1}{\cos t} + y \] ### Step 6: Simplify the expression Using \( 1 - \sin^2 t = \cos^2 t \): \[ \cos^2 t \left( \frac{d^2y}{dt^2} \cdot \frac{1}{\cos^2 t} - \frac{dy}{dt} \cdot \frac{\sin t}{\cos^2 t} \right) - \sin t \cdot \frac{dy}{dt} \cdot \frac{1}{\cos t} + y \] This simplifies to: \[ \frac{d^2y}{dt^2} - \sin t \frac{dy}{dt} - \sin t \frac{dy}{dt} + y \] ### Step 7: Collect terms Thus, we have: \[ \frac{d^2y}{dt^2} + y - 2\sin t \frac{dy}{dt} \] ### Step 8: Compare with the standard form The expression can be compared to the form: \[ \frac{d^2y}{dt^2} + \lambda y \] From this, we can identify that: \[ \lambda = 1 \] ### Final Result Thus, the value of \( \lambda \) is: \[ \lambda = 1 \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|10 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Differentiation Exercise 5:|1 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

If y=(sin^(-1)x)^2 then prove that (1-x^(2))(d^2y)/(dx^2)-x(dy)/(dx)-2=0 .

If y=(x+sqrt(1+x^2))^n then (1+x^2)(d^2y)/(dx^2)+x(dy)/(dx)

If x=sint,y=sinpt , prove that (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)+p^2 y=0 .

If y="sin"(logx), then prove that (x^2d^2y)/(dx^2)+x(dy)/(dx)+y=0

If y=sin(log_(e)x) , then x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx) is equal to

If x=sint ,y=sinpt , prove that (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)+p^2y=0.

If y=e^("mcos"^(-1)x) , prove that: (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)=m^(2)y

If x=sint and y=sinp t , prove that (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)+p^2y=0.

If x=sint and y=sinp t , prove that (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)+p^2y=0.

If y=tan^(-1)x , show that (1+x^2)(d^2y)/(dx^2)+2x(dy)/(dx)=0 .