Home
Class 12
MATHS
The derivative of f(x)=cos^(-1)((1)/(sqr...

The derivative of `f(x)=cos^(-1)((1)/(sqrt3)(2cosx-3sinx))+{sin^(-1)((1)/(sqrt3)(2cosx+3sinx))}` w.r.t. `sqrt(1+x^(2))` at `x=(1)/(sqrt3)`is.........

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \[ f(x) = \cos^{-1}\left(\frac{1}{\sqrt{3}}(2\cos x - 3\sin x)\right) + \sin^{-1}\left(\frac{1}{\sqrt{3}}(2\cos x + 3\sin x)\right) \] with respect to \( \sqrt{1 + x^2} \) at \( x = \frac{1}{\sqrt{3}} \), we will follow these steps: ### Step 1: Simplifying the Function First, we simplify the arguments of the inverse trigonometric functions. Let: \[ A = \frac{1}{\sqrt{3}}(2\cos x - 3\sin x) = \frac{2}{\sqrt{3}}\cos x - \frac{3}{\sqrt{3}}\sin x \] and \[ B = \frac{1}{\sqrt{3}}(2\cos x + 3\sin x) = \frac{2}{\sqrt{3}}\cos x + \frac{3}{\sqrt{3}}\sin x \] ### Step 2: Using Trigonometric Identities We can express \( A \) and \( B \) in terms of angles. Let: \[ \cos \alpha = \frac{2}{\sqrt{3}}, \quad \sin \alpha = \frac{3}{\sqrt{3}} \] This gives: \[ \tan \alpha = \frac{3}{2} \implies \alpha = \tan^{-1}\left(\frac{3}{2}\right) \] Thus, we can rewrite \( A \) as: \[ A = \cos(x - \alpha) \] Similarly, for \( B \): Let: \[ \sin \beta = \frac{2}{\sqrt{3}}, \quad \cos \beta = \frac{3}{\sqrt{3}} \] This gives: \[ \tan \beta = \frac{2}{3} \implies \beta = \tan^{-1}\left(\frac{2}{3}\right) \] Thus, we can rewrite \( B \) as: \[ B = \sin(x + \beta) \] ### Step 3: Combining the Functions Now we can express \( f(x) \) as: \[ f(x) = \cos^{-1}(\cos(x - \alpha)) + \sin^{-1}(\sin(x + \beta)) \] Using the properties of inverse functions, we have: \[ f(x) = (x - \alpha) + (x + \beta) = 2x - \alpha + \beta \] ### Step 4: Differentiating \( f(x) \) Now, we differentiate \( f(x) \): \[ f'(x) = 2 \] ### Step 5: Finding \( g'(x) \) Next, we need to differentiate \( g(x) = \sqrt{1 + x^2} \): \[ g'(x) = \frac{x}{\sqrt{1 + x^2}} \] ### Step 6: Evaluating at \( x = \frac{1}{\sqrt{3}} \) Now we evaluate \( f' \) and \( g' \) at \( x = \frac{1}{\sqrt{3}} \): \[ f'\left(\frac{1}{\sqrt{3}}\right) = 2 \] \[ g'\left(\frac{1}{\sqrt{3}}\right) = \frac{\frac{1}{\sqrt{3}}}{\sqrt{1 + \left(\frac{1}{\sqrt{3}}\right)^2}} = \frac{\frac{1}{\sqrt{3}}}{\sqrt{1 + \frac{1}{3}}} = \frac{\frac{1}{\sqrt{3}}}{\sqrt{\frac{4}{3}}} = \frac{1}{\sqrt{3}} \cdot \frac{\sqrt{3}}{2} = \frac{1}{2} \] ### Step 7: Finding the Final Derivative Now we find the derivative of \( f \) with respect to \( g \): \[ \frac{df}{dg} = \frac{f'(x)}{g'(x)} = \frac{2}{\frac{1}{2}} = 4 \] ### Final Answer Thus, the derivative of \( f(x) \) with respect to \( \sqrt{1 + x^2} \) at \( x = \frac{1}{\sqrt{3}} \) is: \[ \boxed{4} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|10 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Differentiation Exercise 5:|1 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

If f(x)=cos^(-1)(1/sqrt(13))(2cosx-3sinx) +sin^(-1)(1/sqrt(13))(2cosx+3sinx)wdotrdottsqrt(1+x^2), then find (df(x))/(dx) at x=3/4dot

Find the derivative of (sinx)^x+sin^(-1)sqrt(x) w.r.t. x

The derivative of cos^(-1)((sinx+cosx)/(sqrt(2))),-(pi)/(4)ltxlt(pi)/(4) , w.r.t.x is

If y=cos^(-1)((2cosx-3sinx)/(sqrt(13))) , then (dy)/(dx) , is

If f(x)=cos^(- 1)x+cos^(- 1){x/2+1/2sqrt(3-3x^2)} then

Prove that : (1)/(2) cos^(-1) ((1+ 2 cos x)/( 2+cosx) ) = tan^(-1) ((1)/(sqrt(3)) "tan" (x)/(2))

Solve 8sinx=(sqrt(3))/(cosx)+1/(sinx)

Solve 8sinx=(sqrt(3))/(cosx)+1/(sinx)

If int(cosx-sinx)/(sqrt(8-sin2x))dx=sin^(-1)((sinx+cosx)/(a))+C then a =

Solve :(tanx-(1)/(sqrt3))(cosx-(1)/(2))le0.