Home
Class 12
MATHS
Suppose A=(dy)/(dx) of x^(2)+y^(2)=4 at ...

Suppose `A=(dy)/(dx)` of `x^(2)+y^(2)=4` at `(sqrt2,sqrt2), B=(dy)/(dx)` of `sin y+sinx=sinx.siny` at `(pi,pi)andC=(dy)/(dx)` of `2e^(xy)+e^(x).e^(y)-e^(x)-e^(y)=e^(xy+1)` at `(1,1),` then `(A-B-C)` has the value equal to.......

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( A \), \( B \), and \( C \) which are the derivatives \( \frac{dy}{dx} \) at specific points for the given equations. Finally, we will compute \( A - B - C \). ### Step 1: Calculate \( A \) We start with the equation: \[ x^2 + y^2 = 4 \] We differentiate both sides with respect to \( x \): \[ \frac{d}{dx}(x^2) + \frac{d}{dx}(y^2) = \frac{d}{dx}(4) \] This gives: \[ 2x + 2y \frac{dy}{dx} = 0 \] Now, we can solve for \( \frac{dy}{dx} \): \[ 2y \frac{dy}{dx} = -2x \implies \frac{dy}{dx} = -\frac{x}{y} \] Now we substitute \( x = \sqrt{2} \) and \( y = \sqrt{2} \): \[ \frac{dy}{dx} = -\frac{\sqrt{2}}{\sqrt{2}} = -1 \] Thus, \( A = -1 \). ### Step 2: Calculate \( B \) Next, we consider the equation: \[ \sin y + \sin x = \sin x \sin y \] Differentiating both sides with respect to \( x \): \[ \cos y \frac{dy}{dx} + \cos x = \sin y \cos x \frac{dy}{dx} + \sin x \cos y \frac{dy}{dx} \] Rearranging gives: \[ \cos y \frac{dy}{dx} - \sin y \cos x \frac{dy}{dx} = -\cos x \] Factoring out \( \frac{dy}{dx} \): \[ \left( \cos y - \sin y \cos x \right) \frac{dy}{dx} = -\cos x \] Now substituting \( x = \pi \) and \( y = \pi \): \[ \cos \pi = -1, \quad \sin \pi = 0 \] Thus, we have: \[ \left( -1 - 0 \right) \frac{dy}{dx} = 1 \implies -\frac{dy}{dx} = 1 \implies \frac{dy}{dx} = -1 \] So, \( B = -1 \). ### Step 3: Calculate \( C \) Now we consider the equation: \[ 2e^{xy} + e^x e^y - e^x - e^y = e^{xy + 1} \] Differentiating both sides with respect to \( x \): \[ 2e^{xy}(y + x \frac{dy}{dx}) + e^x e^y \frac{dy}{dx} - e^x \frac{dy}{dx} - e^y \frac{dy}{dx} = e^{xy + 1}(y + x \frac{dy}{dx}) \] Now substituting \( x = 1 \) and \( y = 1 \): \[ 2e^{1}(1 + 1 \frac{dy}{dx}) + e^1 e^1 \frac{dy}{dx} - e^1 \frac{dy}{dx} - e^1 \frac{dy}{dx} = e^{1 + 1}(1 + 1 \frac{dy}{dx}) \] This simplifies to: \[ 2e(1 + \frac{dy}{dx}) + e^2 \frac{dy}{dx} - e \frac{dy}{dx} - e \frac{dy}{dx} = e^2(1 + \frac{dy}{dx}) \] Combining terms: \[ 2e + 2e \frac{dy}{dx} = e^2 + e^2 \frac{dy}{dx} \] Rearranging gives: \[ (2e - e^2) + (2e - e^2) \frac{dy}{dx} = 0 \] Thus, we find: \[ \frac{dy}{dx} = \frac{2e}{e^2 - 2e} = -1 \] So, \( C = -1 \). ### Final Calculation Now we compute \( A - B - C \): \[ A - B - C = -1 - (-1) - (-1) = -1 + 1 + 1 = 1 \] ### Conclusion The final value of \( A - B - C \) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|10 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Differentiation Exercise 5:|1 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

Find dy/dx if y=e^(2x)

Find dy/dx if x=e^(2y)

dy/dx = e^-y (2x-4)

dy/dx = y + e^(-2x)

Solve: (dy)/(dx)+2y=e^(-x)

Solve : (dy)/(dx)=e^(3x-2y)+x^(2)e^(-2y)

Find dy/dx if 2y=e^y-2x

Find (dy)/(dx) , when y=e^xlog(1+x^2)

Find dy/dx if y= e^x/sinx

(ii) e^(y)((dy)/(dx)+1)=e^(x)