Home
Class 12
MATHS
Differentiate |x|+a(0)x^(n)+a(1)x^(n-1)+...

Differentiate `|x|+a_(0)x^(n)+a_(1)x^(n-1)+a_(2)x^(n-1)+...+a_(n-1)x+a_(n)`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = |x| + a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \ldots + a_{n-1} x + a_n \), we can break it down into two parts: \( y_1 = |x| \) and \( y_2 = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \ldots + a_{n-1} x + a_n \). ### Step 1: Differentiate \( y_1 = |x| \) The absolute value function can be expressed as: \[ |x| = \begin{cases} x & \text{if } x \geq 0 \\ -x & \text{if } x < 0 \end{cases} \] Thus, the derivative of \( |x| \) is: \[ \frac{d}{dx} |x| = \begin{cases} 1 & \text{if } x > 0 \\ -1 & \text{if } x < 0 \\ \text{undefined} & \text{if } x = 0 \end{cases} \] ### Step 2: Differentiate \( y_2 \) Now, we differentiate \( y_2 \): \[ y_2 = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \ldots + a_{n-1} x + a_n \] Using the power rule for differentiation, we have: \[ \frac{dy_2}{dx} = a_0 \cdot n x^{n-1} + a_1 \cdot (n-1) x^{n-2} + a_2 \cdot (n-2) x^{n-3} + \ldots + a_{n-1} \] The constant term \( a_n \) differentiates to zero. ### Step 3: Combine the derivatives Now, we combine the derivatives of \( y_1 \) and \( y_2 \): \[ \frac{dy}{dx} = \frac{dy_1}{dx} + \frac{dy_2}{dx} \] Thus, we have: \[ \frac{dy}{dx} = \begin{cases} 1 + (a_0 n x^{n-1} + a_1 (n-1) x^{n-2} + a_2 (n-2) x^{n-3} + \ldots + a_{n-1}) & \text{if } x > 0 \\ -1 + (a_0 n x^{n-1} + a_1 (n-1) x^{n-2} + a_2 (n-2) x^{n-3} + \ldots + a_{n-1}) & \text{if } x < 0 \\ \text{undefined} & \text{if } x = 0 \end{cases} \] ### Final Answer The derivative of the function \( y = |x| + a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \ldots + a_{n-1} x + a_n \) is: \[ \frac{dy}{dx} = \begin{cases} 1 + (a_0 n x^{n-1} + a_1 (n-1) x^{n-2} + a_2 (n-2) x^{n-3} + \ldots + a_{n-1}) & \text{if } x > 0 \\ -1 + (a_0 n x^{n-1} + a_1 (n-1) x^{n-2} + a_2 (n-2) x^{n-3} + \ldots + a_{n-1}) & \text{if } x < 0 \\ \text{undefined} & \text{if } x = 0 \end{cases} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|27 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|9 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

Differentiate the following with respect of x : a_0x^n+a_1x^(n-1)+a_2x^(n-2)++a_(n-1)x+a_ndot

In the given figure graph of : y =p (x) = x ^(n)+a_(1) x ^(n-1) +a_(2) x ^(n-2)+ ….. + a _(n) is given. The product of all imaginary roots of p(x) =0 is:

If a_(1),a_(2),a_(3),a_(4),,……, a_(n-1),a_(n) " are distinct non-zero real numbers such that " (a_(1)^(2) + a_(2)^(2) + a_(3)^(2) + …..+ a_(n-1)^(2))x^2 + 2 (a_(1)a_(2) + a_(2)a_(3) + a_(3)a_(4) + ……+ a_(n-1) a_(n))x + (a_(2)^(2) +a_(3)^(2) + a_(4)^(2) +......+ a_(n)^(2)) le 0 " then " a_(1), a_(2), a_(3) ,....., a_(n-1), a_(n) are in

If a_(0), a_(1), a_(2),… are the coefficients in the expansion of (1 + x + x^(2))^(n) in ascending powers of x, prove that a_(0) a_(2) - a_(1) a_(3) + a_(2) a_(4) - …+ a_(2n-2) a_(2n)= a_(n+1) .

If (x + a_(1)) (x + a_(2)) (x + a_(3)) …(x + a_(n)) = x^(n) + S_(1) x^(n-1) + S_(2) x^(n-2) + …+ S_(n) where , S_(1) = sum_(i=0)^(n) a_(i), S_(2) = (sumsum)_(1lei lt j le n) a_(i) a_(j) , S_(3) (sumsumsum)_(1le i ltk le n)a_(i) a_(j) a_(k) and so on . Coefficient of x^(7) in the expansion of (1 + x)^(2) (3 + x)^(3) (5 + x)^(4) is

If (x + a_(1)) (x + a_(2)) (x + a_(3)) …(x + a_(n)) = x^(n) + S_(1) x^(n-1) + S_(2) x^(n-2) + …+ S_(n) where , S_(1) = sum_(i=0)^(n) a_(i), S_(2) = (sumsum)_(1lei lt j le n) a_(i) a_(j) , S_(3) (sumsumsum)_(1le i ltk le n) a_(i) a_(j) a_(k) and so on . If (1 + x)^(n) = C_(0) + C_(1) x + C_(2)x^(2) + ...+ C_(n) x^(n) the cefficient of x^(n) in the expansion of (x + C_(0))(x + C_(1)) (x + C_(2))...(x + C_(n)) is

If the equation a_(n)x^(n)+a_(n-1)x^(n-1)+..+a_(1)x=0, a_(1)!=0, n ge2 , has a positive root x=alpha then the equation na_(n)x^(n-1)+(n-1)a_(n-1)x^(n-2)+….+a_(1)=0 has a positive root which is

If (1 + x + x^(2) + x^(3))^(n)= a_(0) + a_(1)x + a_(2)x^(2) + a_(3) x^(3) +...+ a_(3n) x^(3n) , then the value of a_(0) + a_(4) +a_(8) + a_(12)+….. is

If a_(1),a_(2),a_(3), . . .,a_(n) are non-zero real numbers such that (a_(1)^(2)+a_(2)^(2)+ . .. +a_(n-1).^(2))(a_(2)^(2)+a_(3)^(2)+ . . .+a_(n)^(2))le(a_(1)a_(2)+a_(2)a_(3)+ . . . +a_(n-1)a_(n))^(2)" then", a_(1),a_(2), . . . .a_(n) are in

If the sequence a_(1),a_(2),a_(3),…,a_(n) is an A.P., then prove that a_(1)^(2)-a_(2)^(2)+a_(3)^(2)-a_(4)^(2)+…+a_(2n-1)^(2)-a_(2n)^(2)=n/(2n-1)(a_(1)^(2)-a_(2n)^(2))