Home
Class 12
MATHS
y = sec^(- 1)((x+1)/(x-1))+sin^(- 1)((x-...

y = `sec^(- 1)((x+1)/(x-1))+sin^(- 1)((x-1)/(x+1))`, x > 0. Find dy/dx

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( \frac{dy}{dx} \) for the function \[ y = \sec^{-1}\left(\frac{x+1}{x-1}\right) + \sin^{-1}\left(\frac{x-1}{x+1}\right) \] where \( x > 0 \), we can follow these steps: ### Step 1: Rewrite the Inverse Functions We know that the inverse secant function can be expressed in terms of the inverse cosine function: \[ \sec^{-1}(u) = \cos^{-1}\left(\frac{1}{u}\right) \] Thus, we can rewrite: \[ y = \cos^{-1}\left(\frac{x-1}{x+1}\right) + \sin^{-1}\left(\frac{x-1}{x+1}\right) \] ### Step 2: Use the Identity We can use the identity: \[ \cos^{-1}(u) + \sin^{-1}(u) = \frac{\pi}{2} \] for \( u = \frac{x-1}{x+1} \). Therefore, we have: \[ y = \frac{\pi}{2} \] ### Step 3: Differentiate Since \( y \) is a constant \( \frac{\pi}{2} \), its derivative with respect to \( x \) is: \[ \frac{dy}{dx} = 0 \] ### Final Answer Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = 0 \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|27 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|9 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

If y = sec^(-1) (sqrt(x+1)/(sqrt(x-1)))+ sin^(-1)(sqrt(x-1)/(sqrt(x+1))) then (dy)/(dx) =

If y=sin^(-1)((2x)/(1+x^2)), then find (dy)/(dx)

If y=sin^(-1)((2x)/(1+x^2)), then find (dy)/(dx)

If y=sin^(-1)((1-x^2)/(1+x^2))+cos^(-1)((1-x^2)/(1+x^2)) , find (dy)/(dx) .

y = cos ^(-1)((2x)/(1 +x^(2))),-1 lt x lt1 . find dy/dx

Find (dy)/(dx) if y=sec^(-1)((sqrt(x)+1)/(sqrt(x)-1))+sin^(-1)((sqrt(x)-1)/(sqrt(x)+1))

If y=tan^(-1)((1-x)/(1+x)) , find (dy)/(dx) .

y = sin^(-1)(1/sqrt(1+x^2)) + cos^(-1)(1/sqrt(1+x^2)) . find dy/dx .

If y=sin^(-1)x+cos^(-1)x ,\ find (dy)/(dx) .

y=sin^(-1)(x/sqrt(1+x^2))+cos^(-1)(1/sqrt(1+x^2)), Find dy/dx