Home
Class 12
MATHS
Differentiate:(2^(x)cotx)/(sqrtx)...

Differentiate:`(2^(x)cotx)/(sqrtx)`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \frac{2^x \cot x}{\sqrt{x}} \), we will use the quotient rule. The quotient rule states that if you have a function in the form \( \frac{f(x)}{g(x)} \), the derivative is given by: \[ \frac{d}{dx} \left( \frac{f(x)}{g(x)} \right) = \frac{g(x) f'(x) - f(x) g'(x)}{(g(x))^2} \] ### Step 1: Identify \( f(x) \) and \( g(x) \) Let: - \( f(x) = 2^x \cot x \) - \( g(x) = \sqrt{x} \) ### Step 2: Differentiate \( f(x) \) and \( g(x) \) Now we need to find \( f'(x) \) and \( g'(x) \). #### Differentiate \( g(x) \): \[ g(x) = \sqrt{x} = x^{1/2} \] Using the power rule: \[ g'(x) = \frac{1}{2} x^{-1/2} = \frac{1}{2\sqrt{x}} \] #### Differentiate \( f(x) \): To differentiate \( f(x) = 2^x \cot x \), we will use the product rule: \[ f'(x) = \frac{d}{dx}(2^x) \cot x + 2^x \frac{d}{dx}(\cot x) \] 1. Differentiate \( 2^x \): \[ \frac{d}{dx}(2^x) = 2^x \ln(2) \] 2. Differentiate \( \cot x \): \[ \frac{d}{dx}(\cot x) = -\csc^2 x \] Putting it all together: \[ f'(x) = 2^x \ln(2) \cot x + 2^x (-\csc^2 x) = 2^x \left( \ln(2) \cot x - \csc^2 x \right) \] ### Step 3: Apply the Quotient Rule Now we can apply the quotient rule: \[ y' = \frac{g(x) f'(x) - f(x) g'(x)}{(g(x))^2} \] Substituting \( f(x) \), \( f'(x) \), \( g(x) \), and \( g'(x) \): \[ y' = \frac{\sqrt{x} \left( 2^x \left( \ln(2) \cot x - \csc^2 x \right) \right) - (2^x \cot x) \left( \frac{1}{2\sqrt{x}} \right)}{(\sqrt{x})^2} \] ### Step 4: Simplify the Expression The denominator simplifies to: \[ (\sqrt{x})^2 = x \] Thus: \[ y' = \frac{\sqrt{x} \left( 2^x \left( \ln(2) \cot x - \csc^2 x \right) \right) - \frac{2^x \cot x}{2\sqrt{x}}}{x} \] ### Step 5: Combine Terms Now, we can combine the terms in the numerator: \[ y' = \frac{2^x \sqrt{x} \left( \ln(2) \cot x - \csc^2 x \right) - \frac{2^x \cot x}{2\sqrt{x}}}{x} \] This is the derivative of the function. ### Final Answer \[ y' = \frac{2^x \left( \sqrt{x} \left( \ln(2) \cot x - \csc^2 x \right) - \frac{\cot x}{2\sqrt{x}} \right)}{x} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|27 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|9 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

Differentiate: (2^(x))/(x)

Differentiate 2^(cos^(2)x)

Differentiate x^(2)tanx .

Differentiate x^(cotx)+(2x^2-3)/(x^2+x+2) with respect to x .

differentiate (tanx)^cotx+(cotx)^(tanx)

Differentiate sin^(-1)((2x)/(1+x^2))

Differentiate tan^(-1)(( sqrt(1+x^(2))-1)/(x))

Differentiate log(x+sqrt(x^(2)+a))

Differentiate the following functions with respect to x : (2^2cotx)/(sqrt(x)) (ii) e^xlogsqrt(x)tanx

Differentiate e^(sqrt(cotx)) with respect to x :