Home
Class 12
MATHS
If f(x)=sinx,g(x)=x^(2)andh(x)=logx. IF ...

If `f(x)=sinx,g(x)=x^(2)andh(x)=logx.` IF `F(x)=h(f(g(x))),` then `F'(x)` is

A

`2x cot x^(2)`

B

`2 cosec^(3)x`

C

`-2cosec^(2)x`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the derivative \( F'(x) \) where \( F(x) = h(f(g(x))) \) given the functions \( f(x) = \sin x \), \( g(x) = x^2 \), and \( h(x) = \log x \). ### Step-by-Step Solution: 1. **Identify the Functions**: - \( f(x) = \sin x \) - \( g(x) = x^2 \) - \( h(x) = \log x \) 2. **Find \( F(x) \)**: - We need to compute \( F(x) = h(f(g(x))) \). - First, find \( g(x) \): \[ g(x) = x^2 \] - Now, find \( f(g(x)) \): \[ f(g(x)) = f(x^2) = \sin(x^2) \] - Now, substitute \( f(g(x)) \) into \( h(x) \): \[ F(x) = h(f(g(x))) = h(\sin(x^2)) = \log(\sin(x^2)) \] 3. **Differentiate \( F(x) \)**: - We need to find \( F'(x) \): \[ F'(x) = \frac{d}{dx}[\log(\sin(x^2))] \] - Using the chain rule: \[ F'(x) = \frac{1}{\sin(x^2)} \cdot \frac{d}{dx}[\sin(x^2)] \] - Now, differentiate \( \sin(x^2) \): \[ \frac{d}{dx}[\sin(x^2)] = \cos(x^2) \cdot \frac{d}{dx}[x^2] = \cos(x^2) \cdot 2x \] - Substitute back into the derivative of \( F(x) \): \[ F'(x) = \frac{1}{\sin(x^2)} \cdot (2x \cos(x^2)) \] - Simplifying gives: \[ F'(x) = \frac{2x \cos(x^2)}{\sin(x^2)} = 2x \cot(x^2) \] 4. **Final Result**: - Therefore, the derivative \( F'(x) \) is: \[ F'(x) = 2x \cot(x^2) \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|9 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3:|1 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|10 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=sinx,g(x)=x^(2) and h(x)=log_(e)x. If F(x)=("hog of ")(x)," then "F''(x) is equal to

If f(x)=|x-2| and g(x)=f(f(x)) then g'(x)=

If f(g(x))=4x^(2)-8x and f(x)=x^(2)-4, then g(x)=

If f(x)=sgn(x)={(|x|)/x,x!=0, 0, x=0 and g(x)=f(f(x)), then at x=0,g(x) is

If f(x)=|x-2|" and "g(x)=f(f(x)), then for xgt20,g'(x) equals

If f(x)=|x-1|" and "g(x)=f(f(f(x))) , then for xgt2,g'(x) is equal to

Given f(x)= sqrt(8/(1-x)+8/(1+x)) and g(x) = 4/(f(sinx))+4/(f(cosx)) then g(x) is

If f(x)=|x-2|" and "g(x)=f(f(x)), then for 2ltxlt4,g'(x) equals

If f(x) =4x^2 and g(x) =f(sin x)+f(cos x), then g (23^(@)) is

Let f(x)=x^2+xg^2(1)+g^''(2) and g(x)=f(1).x^2+xf'(x)+f''(x), then find f(x) and g(x).

ARIHANT MATHS ENGLISH-DIFFERENTIATION -Exercise For Session 2
  1. Differentiate the following w.r.t.x. log(x+sqrt(a^(2)+x^(2)))

    Text Solution

    |

  2. Differentiate w.r.t. 'x' : f(x) = log((a+b sin x)/(a - b sin x))

    Text Solution

    |

  3. Differentiate the following w.r.t.x. logsqrt((1+sinx)/(1-sinx))

    Text Solution

    |

  4. Differentiate the following w.r.t.x. (e^(x)+logx)/(sin3x)

    Text Solution

    |

  5. Differentiate the following w.r.t.x. sin(msin^(-1)x),|x|lt1

    Text Solution

    |

  6. Differentiate the following w.r.t.x. a^((sin^(-1)x)^(2)),|x|lt1

    Text Solution

    |

  7. Differentiate the following w.r.t.x. e^(cos^(-1)(sqrt(1-x^(2)))),|x|lt...

    Text Solution

    |

  8. Differentiate the following w.r.t.x. (xsin^(-1)x)/(sqrt(1-x^(2)))+logs...

    Text Solution

    |

  9. Differentiate the following w.r.t.x. log(10)x+log(x)10+log(x)x+log(10)...

    Text Solution

    |

  10. Differentiate the following w.r.t.x. 5^(3-x^(2))+(3-x^(2))^(5)

    Text Solution

    |

  11. Differentiate the following w.r.t.x. (sqrt(a^(2)+x^(2))+sqrt(a^(2)-x^...

    Text Solution

    |

  12. Differentiate the following w.r.t.x. sqrt(4+sqrt(4+sqrt(4+x^(2))))

    Text Solution

    |

  13. Differentiate the following w.r.t.x. The differentiation coneffiecient...

    Text Solution

    |

  14. If f(x) =|log(e)|x||, then f'(x) equals

    Text Solution

    |

  15. If f(x)=sinx,g(x)=x^(2)andh(x)=logx. IF F(x)=h(f(g(x))), then F'(x) is

    Text Solution

    |

  16. If f(x) = cos x cos 2x cos 4x cos 8x cos 16x then find f' (pi/4)

    Text Solution

    |

  17. If y=f((3x+4)/(5x+6))andf'(x)=tanx^(2), then (dy)/(dx) is equal to

    Text Solution

    |

  18. If y = |cos x| + |sin x|,then (dy)/(dx)" at "x(2pi)/(3) is

    Text Solution

    |

  19. If f'(x)=sinx+sin4x.cosx, then f'(2x^(2)) is

    Text Solution

    |

  20. If f'(x)= sqrt(2x^(2)-1) and y=f(x^(2)),then (dy)/(dx) at x = 1 is

    Text Solution

    |