Home
Class 12
MATHS
If y=f((3x+4)/(5x+6))andf'(x)=tanx^(2), ...

If `y=f((3x+4)/(5x+6))andf'(x)=tanx^(2),` then `(dy)/(dx)` is equal to

A

`-2tan((3x+4)/(5x+6))^(2).(1)/((5x+6)^(2))`

B

`f((3tanx^(2)+3)/(5tanx^(2)+6))tanx^(2)`

C

`2xtan((3x-4)/(5x-6))`

D

`tanx^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the given function \(y = f\left(\frac{3x + 4}{5x + 6}\right)\) where \(f'(x) = 10x^2\), we will use the chain rule and the quotient rule for differentiation. Here’s a step-by-step solution: ### Step 1: Differentiate using the chain rule We start by applying the chain rule. The derivative of \(y\) with respect to \(x\) is given by: \[ \frac{dy}{dx} = f'\left(\frac{3x + 4}{5x + 6}\right) \cdot \frac{d}{dx}\left(\frac{3x + 4}{5x + 6}\right) \] **Hint:** Remember that the chain rule states that if \(y = f(u)\), then \(\frac{dy}{dx} = f'(u) \cdot \frac{du}{dx}\). ### Step 2: Differentiate the inner function using the quotient rule Now, we need to differentiate \(\frac{3x + 4}{5x + 6}\) using the quotient rule. The quotient rule states that if \(y = \frac{u}{v}\), then: \[ \frac{dy}{dx} = \frac{v \cdot \frac{du}{dx} - u \cdot \frac{dv}{dx}}{v^2} \] Here, \(u = 3x + 4\) and \(v = 5x + 6\). Calculating the derivatives: - \(\frac{du}{dx} = 3\) - \(\frac{dv}{dx} = 5\) Now applying the quotient rule: \[ \frac{d}{dx}\left(\frac{3x + 4}{5x + 6}\right) = \frac{(5x + 6)(3) - (3x + 4)(5)}{(5x + 6)^2} \] **Hint:** Make sure to apply the quotient rule correctly by substituting the derivatives of \(u\) and \(v\). ### Step 3: Simplify the expression Now, simplify the numerator: \[ = \frac{(15x + 18) - (15x + 20)}{(5x + 6)^2} = \frac{15x + 18 - 15x - 20}{(5x + 6)^2} = \frac{-2}{(5x + 6)^2} \] **Hint:** Combine like terms carefully to avoid mistakes in simplification. ### Step 4: Substitute back into the derivative expression Now substitute this back into our expression for \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = f'\left(\frac{3x + 4}{5x + 6}\right) \cdot \frac{-2}{(5x + 6)^2} \] ### Step 5: Substitute \(f'\) using the given information We know \(f'(x) = 10x^2\). Thus: \[ f'\left(\frac{3x + 4}{5x + 6}\right) = 10\left(\frac{3x + 4}{5x + 6}\right)^2 \] ### Step 6: Final expression for \(\frac{dy}{dx}\) Substituting this into our derivative gives: \[ \frac{dy}{dx} = 10\left(\frac{3x + 4}{5x + 6}\right)^2 \cdot \frac{-2}{(5x + 6)^2} \] \[ = \frac{-20\left(3x + 4\right)^2}{(5x + 6)^4} \] ### Final Answer Thus, the final expression for \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = \frac{-20(3x + 4)^2}{(5x + 6)^4} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|9 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3:|1 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|10 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

If y=f(x^(2))andf'(x)=e^(sqrt(x)) then (dy)/(dx) is equal to

If y=x^(x^(2)), then (dy)/(dx) equals

If 2^(x)+2^(y)=2^(x+y) then (dy)/(dx) is equal to

If 8f(x)+6f(1/x)=x+5 and y=x^2(f(x), then (dy)/(dx) at x=-1 is equal to (a)0 (b) 1/(14) (c) -1/4 (d) None of these

If 8f(x)+6f(1/x)=x+5 and y=x^2(f(x), then (dy)/(dx) at x=-1 is equal to 0 (b) -1/(14) (c) -1/4 (d) None of these

If y=log_(sinx)(tanx), then (dy)/ (dx) at x=(1)/(4) is equal to

If y=log_(x^(2)+4)(7x^(2)-5x+1) , then (dy)/(dx) is equal to

If y={f(x)}^(phi(x)),"then"(dy)/(dx) is

if y=x^2sinx+(3x)/(tanx) , then (dy)/(dx) will be

y=(5x)^(3cos 2x) then find (dy)/(dx) .

ARIHANT MATHS ENGLISH-DIFFERENTIATION -Exercise For Session 2
  1. Differentiate the following w.r.t.x. log(x+sqrt(a^(2)+x^(2)))

    Text Solution

    |

  2. Differentiate w.r.t. 'x' : f(x) = log((a+b sin x)/(a - b sin x))

    Text Solution

    |

  3. Differentiate the following w.r.t.x. logsqrt((1+sinx)/(1-sinx))

    Text Solution

    |

  4. Differentiate the following w.r.t.x. (e^(x)+logx)/(sin3x)

    Text Solution

    |

  5. Differentiate the following w.r.t.x. sin(msin^(-1)x),|x|lt1

    Text Solution

    |

  6. Differentiate the following w.r.t.x. a^((sin^(-1)x)^(2)),|x|lt1

    Text Solution

    |

  7. Differentiate the following w.r.t.x. e^(cos^(-1)(sqrt(1-x^(2)))),|x|lt...

    Text Solution

    |

  8. Differentiate the following w.r.t.x. (xsin^(-1)x)/(sqrt(1-x^(2)))+logs...

    Text Solution

    |

  9. Differentiate the following w.r.t.x. log(10)x+log(x)10+log(x)x+log(10)...

    Text Solution

    |

  10. Differentiate the following w.r.t.x. 5^(3-x^(2))+(3-x^(2))^(5)

    Text Solution

    |

  11. Differentiate the following w.r.t.x. (sqrt(a^(2)+x^(2))+sqrt(a^(2)-x^...

    Text Solution

    |

  12. Differentiate the following w.r.t.x. sqrt(4+sqrt(4+sqrt(4+x^(2))))

    Text Solution

    |

  13. Differentiate the following w.r.t.x. The differentiation coneffiecient...

    Text Solution

    |

  14. If f(x) =|log(e)|x||, then f'(x) equals

    Text Solution

    |

  15. If f(x)=sinx,g(x)=x^(2)andh(x)=logx. IF F(x)=h(f(g(x))), then F'(x) is

    Text Solution

    |

  16. If f(x) = cos x cos 2x cos 4x cos 8x cos 16x then find f' (pi/4)

    Text Solution

    |

  17. If y=f((3x+4)/(5x+6))andf'(x)=tanx^(2), then (dy)/(dx) is equal to

    Text Solution

    |

  18. If y = |cos x| + |sin x|,then (dy)/(dx)" at "x(2pi)/(3) is

    Text Solution

    |

  19. If f'(x)=sinx+sin4x.cosx, then f'(2x^(2)) is

    Text Solution

    |

  20. If f'(x)= sqrt(2x^(2)-1) and y=f(x^(2)),then (dy)/(dx) at x = 1 is

    Text Solution

    |