Home
Class 12
MATHS
If x^2e^y+2xye^x+13=0 then (dy)/(dx)=...

If `x^2e^y+2xye^x+13=0` then `(dy)/(dx)=`

A

`(-2xe^(y-x)-2y(x-1))/(x(xe^(y-x)+2))`

B

`(2xe^(x-y)-2y(x-1))/(x(xe^(y-x)+2))`

C

`(2xe^(x-y)+2y(x-1))/(x(xe^(y-x)+2))`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the equation \(x^2 e^y + 2xy e^x + 13 = 0\), we will use implicit differentiation. Here’s the step-by-step solution: ### Step 1: Differentiate both sides of the equation with respect to \(x\). Given: \[ x^2 e^y + 2xy e^x + 13 = 0 \] Differentiating both sides: \[ \frac{d}{dx}(x^2 e^y) + \frac{d}{dx}(2xy e^x) + \frac{d}{dx}(13) = 0 \] ### Step 2: Apply the product rule and chain rule. 1. For \(x^2 e^y\): - Using the product rule: \[ \frac{d}{dx}(x^2 e^y) = e^y \frac{d}{dx}(x^2) + x^2 \frac{d}{dx}(e^y) = e^y (2x) + x^2 e^y \frac{dy}{dx} \] Therefore, \[ \frac{d}{dx}(x^2 e^y) = 2x e^y + x^2 e^y \frac{dy}{dx} \] 2. For \(2xy e^x\): - Again using the product rule: \[ \frac{d}{dx}(2xy e^x) = 2y e^x + 2x e^x \frac{dy}{dx} + 2xy e^x \] Therefore, \[ \frac{d}{dx}(2xy e^x) = 2y e^x + 2xy e^x + 2x e^x \frac{dy}{dx} \] 3. The derivative of \(13\) is \(0\). ### Step 3: Combine the derivatives. Now, substituting back into the differentiated equation: \[ (2x e^y + x^2 e^y \frac{dy}{dx}) + (2y e^x + 2xy e^x + 2x e^x \frac{dy}{dx}) + 0 = 0 \] ### Step 4: Rearrange the equation. Combining like terms: \[ x^2 e^y \frac{dy}{dx} + 2x e^x \frac{dy}{dx} + 2x e^y + 2y e^x + 2xy e^x = 0 \] Factoring out \(\frac{dy}{dx}\): \[ \left(x^2 e^y + 2x e^x\right) \frac{dy}{dx} + (2x e^y + 2y e^x + 2xy e^x) = 0 \] ### Step 5: Solve for \(\frac{dy}{dx}\). Isolate \(\frac{dy}{dx}\): \[ \left(x^2 e^y + 2x e^x\right) \frac{dy}{dx} = - (2x e^y + 2y e^x + 2xy e^x) \] Thus, \[ \frac{dy}{dx} = -\frac{2x e^y + 2y e^x + 2xy e^x}{x^2 e^y + 2x e^x} \] ### Final Answer: \[ \frac{dy}{dx} = -\frac{2x e^y + 2y e^x + 2xy e^x}{x^2 e^y + 2x e^x} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3:|1 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|10 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|27 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

If e^x+e^y=e^(x+y) , prove that (dy)/(dx)=-(e^x(e^y-1))/(e^y(e^x-1)) or, (dy)/(dx)+e^(y-x)=0

If e^x+e^y=e^(x+y) , prove that (dy)/(dx)+e^(y-x)=0

If x^y=e^(x-y), show that (dy)/(dx)=(logx)/({log(x e)}^2)

If ln((e-1)e^(xy) +x^2)=x^2+y^2 then ((dy)/(dx))_(1,0) is equal to

If ln((e-1)e^(xy) +x^2)=x^2+y^2 then ((dy)/(dx))_(1,0) is equal to

Statement 1: If e^(xy)+ln(xy)+cos(xy)+5=0, then (dy)/(dx)=-y/x . Statement 2: d/(dx)(xy)=0,y is a function of x implies(dy)/(dx)=-y/x .

If y=(e^x-e^(-x))/(e^x+e^(-x)) , prove that (dy)/(dx)=1-y^2

If y=(e^x-e^(-x))/(e^x+e^(-x)) , prove that (dy)/(dx)=1-y^2

Solve the following differential equation: (d^2y)/dx^2=e^x+cosx , given that (dy)/(dx)=1=y , when x=0

y^2+x^2(dy)/(dx)=x y(dy)/(dx)