Home
Class 12
MATHS
If xlog(e)y+ylog(e)x=5, then (dy)/(dx) i...

If `xlog_(e)y+ylog_(e)x=5`, then `(dy)/(dx)` is

A

`-(y)/(x)((xlogy+y)/(x+ylogx))`

B

`-(x)/(y)((xlogy+y)/(x+ylogx))`

C

`-(y)/(x)((xlogy-y)/(x+ylogx))`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) from the equation \(x \log_e y + y \log_e x = 5\), we will differentiate both sides of the equation with respect to \(x\). ### Step-by-Step Solution: 1. **Differentiate both sides of the equation**: \[ \frac{d}{dx}(x \log_e y + y \log_e x) = \frac{d}{dx}(5) \] The right side differentiates to 0 since 5 is a constant. 2. **Apply the product rule**: For the term \(x \log_e y\): \[ \frac{d}{dx}(x \log_e y) = x \cdot \frac{d}{dx}(\log_e y) + \log_e y \cdot \frac{d}{dx}(x) \] The derivative of \(\log_e y\) with respect to \(x\) is \(\frac{1}{y} \frac{dy}{dx}\) (using the chain rule), and the derivative of \(x\) is 1. Thus, \[ \frac{d}{dx}(x \log_e y) = x \cdot \frac{1}{y} \frac{dy}{dx} + \log_e y \] For the term \(y \log_e x\): \[ \frac{d}{dx}(y \log_e x) = y \cdot \frac{d}{dx}(\log_e x) + \log_e x \cdot \frac{d}{dx}(y) \] The derivative of \(\log_e x\) is \(\frac{1}{x}\), so we have: \[ \frac{d}{dx}(y \log_e x) = y \cdot \frac{1}{x} + \log_e x \cdot \frac{dy}{dx} \] 3. **Combine the derivatives**: Now we can combine the derivatives: \[ x \cdot \frac{1}{y} \frac{dy}{dx} + \log_e y + y \cdot \frac{1}{x} + \log_e x \cdot \frac{dy}{dx} = 0 \] 4. **Rearrange the equation**: Group the terms involving \(\frac{dy}{dx}\): \[ \left( x \cdot \frac{1}{y} + \log_e x \right) \frac{dy}{dx} + \log_e y + \frac{y}{x} = 0 \] 5. **Isolate \(\frac{dy}{dx}\)**: Move the constant terms to the right side: \[ \left( x \cdot \frac{1}{y} + \log_e x \right) \frac{dy}{dx} = -\left( \log_e y + \frac{y}{x} \right) \] Now, divide both sides by \(\left( x \cdot \frac{1}{y} + \log_e x \right)\): \[ \frac{dy}{dx} = -\frac{\log_e y + \frac{y}{x}}{x \cdot \frac{1}{y} + \log_e x} \] 6. **Simplify the expression**: We can rewrite the expression: \[ \frac{dy}{dx} = -\frac{y \log_e y + y^2/x}{x + y \log_e x} \] This can be factored further: \[ \frac{dy}{dx} = -\frac{y}{x} \cdot \frac{x \log_e y + y}{x + y \log_e x} \] ### Final Answer: Thus, the derivative \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = -\frac{y}{x} \left( x \log_e y + y \log_e x \right) \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3:|1 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|10 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|27 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

If e^(-y)*y=x, then (dy)/(dx) is

If y=e^x log x then (dy)/(dx) is

If y=e^(x) then (dy)/(dx)

If y = e^(-x) , then (dy)/(dx) is

xy=e^(x-y) then (dy)/(dx)=

If y=log_(e)x+sinx+e^(x)" then "(dy)/(dx) is

If y=e^(x)tanx+x.log_(e)x, then find (dy)/(dx)

If y=e^(x).cotx then (dy)/(dx) will be

If y=e^(1+log_(e)x) , then the value of (dy)/(dx) is equal to

y=e^(x) find (dy)/(dx)