Home
Class 12
MATHS
If y=cos^(-1)((x-x^(-1))/(x+x^(-1))), th...

If `y=cos^(-1)((x-x^(-1))/(x+x^(-1))),` then `(dy)/(dx)` is

A

`{:{((2)/(1+x^(2))",",xgt0),(-(2)/(1+x^(2))",",xlt0):}`

B

`{:{((2)/(1+x^(2))",",xgt0),("does not exist"",", x=0),((-2)/(1+x^(2))",",xlt0):}`

C

`{:{((2)/(1+x^(2))",",xlt0),("does not exist"",", x=0),((-2)/(1+x^(2))",",xgt0):}`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( \frac{dy}{dx} \) for the function \( y = \cos^{-1}\left(\frac{x - \frac{1}{x}}{x + \frac{1}{x}}\right) \), we will follow these steps: ### Step 1: Simplify the argument of the inverse cosine function We start with the expression inside the inverse cosine: \[ \frac{x - \frac{1}{x}}{x + \frac{1}{x}} = \frac{x^2 - 1}{x^2 + 1} \] This is obtained by multiplying the numerator and the denominator by \( x \). ### Step 2: Rewrite the function Now we can rewrite \( y \): \[ y = \cos^{-1}\left(\frac{x^2 - 1}{x^2 + 1}\right) \] ### Step 3: Use the identity for inverse cosine Using the identity \( \cos^{-1}(-\theta) = \pi - \cos^{-1}(\theta) \), we can express \( y \) as: \[ y = \pi - \cos^{-1}\left(\frac{1 - x^2}{1 + x^2}\right) \] ### Step 4: Use the known formula for inverse cosine We know that: \[ \cos^{-1}\left(\frac{1 - x^2}{1 + x^2}\right) = 2 \tan^{-1}(x) \] Thus, we can express \( y \) as: \[ y = \pi - 2 \tan^{-1}(x) \] ### Step 5: Differentiate \( y \) Now we differentiate \( y \): \[ \frac{dy}{dx} = 0 - 2 \cdot \frac{d}{dx}(\tan^{-1}(x)) \] Using the derivative of \( \tan^{-1}(x) \): \[ \frac{d}{dx}(\tan^{-1}(x)) = \frac{1}{1 + x^2} \] We get: \[ \frac{dy}{dx} = -2 \cdot \frac{1}{1 + x^2} \] ### Final Result Thus, the derivative is: \[ \frac{dy}{dx} = -\frac{2}{1 + x^2} \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|7 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|18 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3:|1 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

If y=cos^(-1)((sqrt(x)-1)/(sqrt(x)+1))+cosec^(-1)((sqrt(x)+1)/(sqrt(x)-1)) , then (dy)/(dx) is equal to

If y=sin^(-1)(x/2)+cos^(-1)(x/2) then (dy)/(dx)=

If y= (1+(1)/(x) )^(x) + x^(1+(1)/(x)) then find (dy)/(dx)

If y=cos^(-1)((3x+4\ sqrt(1-x^2))/5) , find (dy)/(dx)

If y=(x^(2))/((x+1))"then"(dy)/(dx)"is":-

If y=sin^(-1)(cos x)+cos^(-1)(sin x) , prove that (dy)/(dx)=-2

If y=cos^(-1)((2^x+1)/(1+4^x)), find (dy)/(dx)

If y=[(x^2+1)/(x+1)] , then find (dy)/(dx) .

y = cos ^(-1)((2x)/(1 +x^(2))),-1 lt x lt1 . find dy/dx

If y=tan^(-1)((1-x)/(1+x)) , find (dy)/(dx) .