Home
Class 12
MATHS
If y="tan"^(-1)((sqrt(1+sinx)+sqrt(1-sin...

If `y="tan"^(-1)((sqrt(1+sinx)+sqrt(1-sinx)))/((sqrt(1+sinx)-sqrt(1-sinx)))," find "(dy)/(dx).`

A

`{:{((1)/(2)", " "cos"(x)/(2)gt"sin"(x)/(2)),((-(1)/(2)",","cos"(x)/(2)lt"sin"(x)/(2))),("doesnotexist," x={npi},n in "integer"):}`

B

`{:{(-(1)/(2)", " "cos"(x)/(2)gt"sin"(x)/(2)),(((1)/(2)",","cos"(x)/(2)lt"sin"(x)/(2))),("doesnotexist," x={npi},n in "integer"):}`

C

`{:{(-(1)/(2)", " "cos"(x)/(2)ge"sin"(x)/(2)),(((1)/(2)",","cos"(x)/(2)lt"sin"(x)/(2))):}`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the derivative of the given function \( y = \tan^{-1} \left( \frac{\sqrt{1+\sin x} + \sqrt{1-\sin x}}{\sqrt{1+\sin x} - \sqrt{1-\sin x}} \right) \). ### Step-by-Step Solution: 1. **Let \( z \) be the expression inside the arctangent:** \[ z = \frac{\sqrt{1+\sin x} + \sqrt{1-\sin x}}{\sqrt{1+\sin x} - \sqrt{1-\sin x}} \] 2. **Rationalize the expression for \( z \):** Multiply the numerator and the denominator by \( \sqrt{1+\sin x} - \sqrt{1-\sin x} \): \[ z = \frac{(\sqrt{1+\sin x} + \sqrt{1-\sin x})(\sqrt{1+\sin x} - \sqrt{1-\sin x})}{(\sqrt{1+\sin x} - \sqrt{1-\sin x})(\sqrt{1+\sin x} - \sqrt{1-\sin x})} \] 3. **Simplify the numerator using the difference of squares:** \[ \text{Numerator: } (1+\sin x) - (1-\sin x) = 2\sin x \] \[ \text{Denominator: } (\sqrt{1+\sin x} - \sqrt{1-\sin x})^2 = (1+\sin x) + (1-\sin x) - 2\sqrt{(1+\sin x)(1-\sin x)} = 2 - 2\sqrt{1-\sin^2 x} = 2 - 2\cos x \] 4. **Combine the results:** \[ z = \frac{2\sin x}{2(1 - \cos x)} = \frac{\sin x}{1 - \cos x} \] 5. **Recognize the identity:** Using the identity \( 1 - \cos x = 2\sin^2\left(\frac{x}{2}\right) \): \[ z = \frac{\sin x}{2\sin^2\left(\frac{x}{2}\right)} = \frac{2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right)}{2\sin^2\left(\frac{x}{2}\right)} = \frac{\cos\left(\frac{x}{2}\right)}{\sin\left(\frac{x}{2}\right)} = \cot\left(\frac{x}{2}\right) \] 6. **Substituting back into \( y \):** \[ y = \tan^{-1}(\cot\left(\frac{x}{2}\right)) = \frac{\pi}{2} - \frac{x}{2} \] 7. **Differentiate \( y \) with respect to \( x \):** \[ \frac{dy}{dx} = -\frac{1}{2} \] ### Final Answer: \[ \frac{dy}{dx} = -\frac{1}{2} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|7 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|18 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3:|1 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

" If "y=cot^(-1)[(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))](0ltxltpi//2)," then "(dy)/(dx)=

If y=cot^(-1){(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))}. Show that (dy)/(dx) is independent of x.

cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=(x)/(2), x in (0,(pi)/(4))

int(sinx)/(sqrt(1+sinx))dx

Prove that: cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2,x in (0,pi/4)

Prove that: cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2,x in (0,pi/4)

Prove that: cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2, x in (0,pi/4)

The value of tan^(-1)[(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx)-sqrt(1+sinx))](AA x in [0, (pi)/(2)]) is equal to

Differentiate tan^(-1){(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))} , 0 < x < pi

If y=cot^(-1)[(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))] , (0 lt x lt pi/2) , then (dy)/(dx)=