Home
Class 12
MATHS
Sketch for the curve y = sin^(-1)( (2x)/...

Sketch for the curve `y = sin^(-1)( (2x)/( 1 + x^2))`

Text Solution

AI Generated Solution

The correct Answer is:
To sketch the curve of \( y = \sin^{-1}\left(\frac{2x}{1 + x^2}\right) \), we will follow a systematic approach. ### Step-by-Step Solution: 1. **Substitution**: Let \( x = \tan(\theta) \). This substitution helps us to simplify the expression. As \( \theta \) varies from \( -\frac{\pi}{2} \) to \( \frac{\pi}{2} \), \( x \) will cover all real numbers. \[ \text{Thus, } \frac{2x}{1 + x^2} = \frac{2\tan(\theta)}{1 + \tan^2(\theta)} \] 2. **Using Trigonometric Identity**: We know that \( 1 + \tan^2(\theta) = \sec^2(\theta) \). Therefore, we can simplify: \[ \frac{2\tan(\theta)}{1 + \tan^2(\theta)} = \frac{2\tan(\theta)}{\sec^2(\theta)} = 2\tan(\theta)\cos^2(\theta) = 2\sin(\theta)\cos(\theta) = \sin(2\theta) \] 3. **Rewriting the Function**: Now we can rewrite the function \( y \): \[ y = \sin^{-1}(\sin(2\theta)) \] 4. **Understanding the Inverse Function**: The function \( \sin^{-1}(\sin(x)) \) has specific intervals: - If \( 2\theta \) is in the range \( -\frac{\pi}{2} \leq 2\theta \leq \frac{\pi}{2} \), then \( y = 2\theta \). - If \( 2\theta \) is in the range \( \frac{\pi}{2} < 2\theta < \frac{3\pi}{2} \), then \( y = \pi - 2\theta \). - If \( 2\theta \) is in the range \( -\frac{3\pi}{2} < 2\theta < -\frac{\pi}{2} \), then \( y = -\pi - 2\theta \). 5. **Finding the Intervals for \( x \)**: Since \( \theta = \tan^{-1}(x) \), we can express the intervals for \( x \): - For \( -\frac{\pi}{4} \leq \theta \leq \frac{\pi}{4} \) (which corresponds to \( -1 \leq x \leq 1 \)), we have \( y = 2\tan^{-1}(x) \). - For \( -\frac{\pi}{4} < \theta < -\frac{3\pi}{4} \) (which corresponds to \( x < -1 \)), we have \( y = -2\tan^{-1}(x) - \pi \). - For \( \frac{\pi}{4} < \theta < \frac{3\pi}{4} \) (which corresponds to \( x > 1 \)), we have \( y = -2\tan^{-1}(x) + \pi \). 6. **Sketching the Graph**: Now we can sketch the graph based on these intervals: - For \( -1 \leq x \leq 1 \), plot \( y = 2\tan^{-1}(x) \). - For \( x < -1 \), plot \( y = -2\tan^{-1}(x) - \pi \). - For \( x > 1 \), plot \( y = -2\tan^{-1}(x) + \pi \).
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|7 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|18 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3:|1 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

Sketch for the curve y=sin^(- 1)(3x-4x^3)

Sketch the curve y=x^3 .

Sketch the curve y="sin"^(2)x .

Sketch the curve y="sin"2x .

Sketch the curve y=x^3-4x .

Sketch the curve y="log"|x|

Sketch the curve y="log"|x|

Sketch the curve y=(x-1)(x-2)(x-3) .

Find the equation of tangent to the curve y=sin^(-1)(2x)/(1+x^2)a tx=sqrt(3)

Sketch the curve |y|=(x-1)(x-2)dot