Home
Class 12
MATHS
Differentiate tan^(-1)((2x)/(1-x^2)) wit...

Differentiate `tan^(-1)((2x)/(1-x^2))` with respect to `sin^(-1)((2x)/(1+x^2))` , if `x in (-1,\ 1)`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate \( \tan^{-1}\left(\frac{2x}{1-x^2}\right) \) with respect to \( \sin^{-1}\left(\frac{2x}{1+x^2}\right) \), we will follow these steps: ### Step 1: Substitute \( x = \tan(\theta) \) Let \( x = \tan(\theta) \). Then we can express \( \tan^{-1}\left(\frac{2x}{1-x^2}\right) \) and \( \sin^{-1}\left(\frac{2x}{1+x^2}\right) \) in terms of \( \theta \). ### Step 2: Simplify \( \tan^{-1}\left(\frac{2\tan(\theta)}{1-\tan^2(\theta)}\right) \) Using the double angle formula for tangent, we have: \[ \tan(2\theta) = \frac{2\tan(\theta)}{1-\tan^2(\theta)} \] Thus, \[ \tan^{-1}\left(\frac{2\tan(\theta)}{1-\tan^2(\theta)}\right) = 2\theta \] ### Step 3: Simplify \( \sin^{-1}\left(\frac{2\tan(\theta)}{1+\tan^2(\theta)}\right) \) Using the double angle formula for sine, we have: \[ \sin(2\theta) = \frac{2\tan(\theta)}{1+\tan^2(\theta)} \] Thus, \[ \sin^{-1}\left(\frac{2\tan(\theta)}{1+\tan^2(\theta)}\right) = 2\theta \] ### Step 4: Differentiate \( \tan^{-1}\left(\frac{2x}{1-x^2}\right) \) and \( \sin^{-1}\left(\frac{2x}{1+x^2}\right) \) Now we differentiate both expressions with respect to \( \theta \): 1. The derivative of \( 2\theta \) with respect to \( \theta \) is \( 2 \). 2. The derivative of \( 2\theta \) with respect to \( \theta \) is also \( 2 \). ### Step 5: Apply the chain rule Using the chain rule, we find: \[ \frac{d}{d\theta}\left(\tan^{-1}\left(\frac{2x}{1-x^2}\right)\right) = 2 \] \[ \frac{d}{d\theta}\left(\sin^{-1}\left(\frac{2x}{1+x^2}\right)\right) = 2 \] ### Step 6: Find the derivative of \( \tan^{-1}\left(\frac{2x}{1-x^2}\right) \) with respect to \( \sin^{-1}\left(\frac{2x}{1+x^2}\right) \) Thus, we have: \[ \frac{d}{d\theta}\left(\tan^{-1}\left(\frac{2x}{1-x^2}\right)\right) \div \frac{d}{d\theta}\left(\sin^{-1}\left(\frac{2x}{1+x^2}\right)\right) = \frac{2}{2} = 1 \] ### Final Answer Therefore, the derivative of \( \tan^{-1}\left(\frac{2x}{1-x^2}\right) \) with respect to \( \sin^{-1}\left(\frac{2x}{1+x^2}\right) \) is \( 1 \). ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 8|14 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 9|3 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|18 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

Differentiate tan^(-1)((2x)/(1-x^2)) with respect to x

Differentiate tan^(-1)((2x)/(1-x^2)) with respect to x

Differentiate tan^(-1)((a+x)/(1-a x)) with respect to x

Differentiate sin^(-1)((2x)/(1+x^2))

Differentiate sin^(-1)((2x)/(1+x^2)) with respect to tan^(-1)((2x)/(1-x^2)),

Differentiate tan^(-1)(x/(1+6\ x^2)) with respect to x

Differentiate sin^(-1)((2x)/(1+x^2)) with respect to tan^(-1)x .

Differentiate sin^(-1)((2x)/(1+x^2)) with respect to tan^(-1)((2x)/(1-x^2)), if -1

Differentiate tan^(-1)((sqrt(1+x^2)-1)/x) with respect to sin^(-1)((2x)/(1+x^2)),

Differentiate tan^-1""((2x)/(1-x^2)) with respect to cos ^-1 ((1-x^2)/(1+x^2))