Home
Class 12
MATHS
Differentiate tan^(-1)((2x)/(1-x^(2))) w...

Differentiate `tan^(-1)((2x)/(1-x^(2)))` w.r.t. `sin^(-1)((2x)/(1+x^(2))).`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate \( \tan^{-1}\left(\frac{2x}{1-x^2}\right) \) with respect to \( \sin^{-1}\left(\frac{2x}{1+x^2}\right) \), we can follow these steps: ### Step 1: Define the Functions Let: - \( U = \tan^{-1}\left(\frac{2x}{1-x^2}\right) \) - \( V = \sin^{-1}\left(\frac{2x}{1+x^2}\right) \) ### Step 2: Use Trigonometric Identities We can use the trigonometric identities to simplify \( U \) and \( V \): - From the double angle formulas, we know: \[ \frac{2\tan(\theta)}{1-\tan^2(\theta)} = \tan(2\theta) \] Thus, if we let \( x = \tan(\theta) \), we have: \[ U = \tan^{-1}(\tan(2\theta)) = 2\theta \] - Similarly, for \( V \): \[ \frac{2\tan(\theta)}{1+\tan^2(\theta)} = \sin(2\theta) \] Therefore: \[ V = \sin^{-1}(\sin(2\theta)) = 2\theta \] ### Step 3: Relate \( \theta \) to \( x \) Since \( x = \tan(\theta) \), we can express \( \theta \) as: \[ \theta = \tan^{-1}(x) \] Thus: \[ U = 2\tan^{-1}(x) \quad \text{and} \quad V = 2\tan^{-1}(x) \] ### Step 4: Differentiate \( U \) and \( V \) Now, we differentiate \( U \) and \( V \) with respect to \( x \): - For \( U \): \[ \frac{dU}{dx} = 2 \cdot \frac{d}{dx}(\tan^{-1}(x)) = 2 \cdot \frac{1}{1+x^2} \] Thus: \[ \frac{dU}{dx} = \frac{2}{1+x^2} \] - For \( V \): \[ \frac{dV}{dx} = 2 \cdot \frac{d}{dx}(\tan^{-1}(x)) = 2 \cdot \frac{1}{1+x^2} \] Thus: \[ \frac{dV}{dx} = \frac{2}{1+x^2} \] ### Step 5: Find \( \frac{dU}{dV} \) Now, we can find \( \frac{dU}{dV} \): \[ \frac{dU}{dV} = \frac{\frac{dU}{dx}}{\frac{dV}{dx}} = \frac{\frac{2}{1+x^2}}{\frac{2}{1+x^2}} = 1 \] ### Final Result Thus, we conclude that: \[ \frac{d}{dV}\left(\tan^{-1}\left(\frac{2x}{1-x^2}\right)\right) = 1 \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 8|14 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 9|3 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|18 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

Differentiate tan^(-1)((2x)/(1-x^2)) with respect to sin^(-1)((2x)/(1+x^2)) , if x in (-1,\ 1)

Differentiate tan^(-1)((2x)/(1-x^2)) with respect to sin^(-1)((2x)/(1+x^2)) , if x in (-1,\ 1)

If x in((1)/(sqrt2)1). Differentiate tan^(-1)(sqrt(1-x^(2))/(x)) w.r. t. cos^(-1)(2xsqrt(1-x^(2))).

Differentiate sin^(-1)((2x)/(1+x^2)) with respect to tan^(-1)((2x)/(1-x^2)), if -1

Differentiate sin^(-1)((2x)/(1+x^2)) with respect to tan^(-1)((2x)/(1-x^2)),

Differentiate tan^(-1)((2x)/(1-x^2)) with respect to x

Differentiate tan^(-1)((2x)/(1-x^2)) with respect to x

Differentiate w.r.t x tan^-1((2x)/(1+15x^2))

Differentiate tan^(-1)((x)/(sqrt(1-x^(2)))) with respect to cos^(-1)(2x^(2)-1) .

Differentiate tan^(-1) ((sqrt(1+x^(2))-1)/(x)) w.r.t. tan^(-1) ((x)/(sqrt(1-x^(2)))) .