Home
Class 12
MATHS
Differentiate sin^(-1)(4xsqrt(1-4x^(2)))...

Differentiate `sin^(-1)(4xsqrt(1-4x^(2)))w.r.t.sqrt(1-4x^(2))`, if `x in(-(1)/(2sqrt2),(1)/(2sqrt2))`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate \( \sin^{-1}(4x\sqrt{1-4x^2}) \) with respect to \( \sqrt{1-4x^2} \), we will follow these steps: ### Step 1: Define the Functions Let: \[ y_1 = \sin^{-1}(4x\sqrt{1-4x^2}) \] \[ y_2 = \sqrt{1-4x^2} \] ### Step 2: Differentiate \( y_1 \) with respect to \( x \) Using the chain rule, we differentiate \( y_1 \): \[ \frac{dy_1}{dx} = \frac{1}{\sqrt{1 - (4x\sqrt{1-4x^2})^2}} \cdot \frac{d}{dx}(4x\sqrt{1-4x^2}) \] ### Step 3: Differentiate \( 4x\sqrt{1-4x^2} \) Using the product rule: \[ \frac{d}{dx}(4x\sqrt{1-4x^2}) = 4\sqrt{1-4x^2} + 4x \cdot \frac{1}{2\sqrt{1-4x^2}} \cdot (-8x) = 4\sqrt{1-4x^2} - \frac{16x^2}{\sqrt{1-4x^2}} \] Combining the terms: \[ \frac{d}{dx}(4x\sqrt{1-4x^2}) = \frac{4(1-4x^2) - 16x^2}{\sqrt{1-4x^2}} = \frac{4 - 32x^2}{\sqrt{1-4x^2}} \] ### Step 4: Substitute Back into \( \frac{dy_1}{dx} \) Now substituting back: \[ \frac{dy_1}{dx} = \frac{1}{\sqrt{1 - (4x\sqrt{1-4x^2})^2}} \cdot \frac{4 - 32x^2}{\sqrt{1-4x^2}} \] ### Step 5: Differentiate \( y_2 \) with respect to \( x \) Now differentiate \( y_2 \): \[ \frac{dy_2}{dx} = \frac{d}{dx}(\sqrt{1-4x^2}) = \frac{-8x}{2\sqrt{1-4x^2}} = \frac{-4x}{\sqrt{1-4x^2}} \] ### Step 6: Use the Chain Rule to Find \( \frac{dy_1}{dy_2} \) Using the chain rule: \[ \frac{dy_1}{dy_2} = \frac{dy_1/dx}{dy_2/dx} = \frac{\frac{1}{\sqrt{1 - (4x\sqrt{1-4x^2})^2}} \cdot \frac{4 - 32x^2}{\sqrt{1-4x^2}}}{\frac{-4x}{\sqrt{1-4x^2}}} \] Simplifying: \[ \frac{dy_1}{dy_2} = -\frac{(4 - 32x^2)}{4x\sqrt{1 - (4x\sqrt{1-4x^2})^2}} \] ### Step 7: Final Expression Thus, the final expression for the derivative \( \frac{dy_1}{dy_2} \) is: \[ \frac{dy_1}{dy_2} = -\frac{(4 - 32x^2)}{4x\sqrt{1 - (4x\sqrt{1-4x^2})^2}} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 8|14 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 9|3 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|18 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

Differentiate sin^(-1)(2xsqrt(1-x^2)),

Differentiate tan^-1((4sqrt(x))/(1-4x))

Differentiate sin^(-1)\ (1)/(sqrt(x+1))

Differentiate sin^(-1)'(1)/(sqrt(x+1))

Differentiate cos^(-1)(2xsqrt(1-x^2)) -1/(sqrt(2))

Differentiate tan^(-1)(( sqrt(1+x^(2))-1)/(x))

Differentiate sin^(-1)sqrt(1-x^2) with respect to x

Differentiate sin^(-1)(2xsqrt(1-x^2)) with respect to x'

Differentiate sin^(-1)(2xsqrt(1-x^2)) with respect to x .

Differentiate sin^(-1)(2xsqrt(1-x^2)) with respect to x ,