Home
Class 12
MATHS
Differentiate sin^(-1)(4xsqrt(1-4x^(2)))...

Differentiate `sin^(-1)(4xsqrt(1-4x^(2)))w.r.t.sqrt(1-4x^(2))`, if `x in(-(1)/(2sqrt2),(1)/(2sqrt2))`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate \( \sin^{-1}(4x\sqrt{1-4x^2}) \) with respect to \( \sqrt{1-4x^2} \), we will follow these steps: ### Step 1: Define the functions Let: - \( y_1 = \sin^{-1}(4x\sqrt{1-4x^2}) \) - \( y_2 = \sqrt{1-4x^2} \) We need to find \( \frac{dy_1}{dy_2} \). ### Step 2: Differentiate \( y_1 \) with respect to \( x \) To differentiate \( y_1 \), we will use the chain rule. The derivative of \( \sin^{-1}(u) \) is given by \( \frac{1}{\sqrt{1-u^2}} \cdot \frac{du}{dx} \), where \( u = 4x\sqrt{1-4x^2} \). First, we find \( u \): \[ u = 4x\sqrt{1-4x^2} \] Now, we differentiate \( u \) with respect to \( x \): \[ \frac{du}{dx} = 4\sqrt{1-4x^2} + 4x \cdot \frac{d}{dx}(\sqrt{1-4x^2}) \] Using the chain rule for \( \sqrt{1-4x^2} \): \[ \frac{d}{dx}(\sqrt{1-4x^2}) = \frac{1}{2\sqrt{1-4x^2}} \cdot (-8x) = -\frac{4x}{\sqrt{1-4x^2}} \] Thus, \[ \frac{du}{dx} = 4\sqrt{1-4x^2} - \frac{16x^2}{\sqrt{1-4x^2}} = \frac{4(1-4x^2) - 16x^2}{\sqrt{1-4x^2}} = \frac{4 - 16x^2}{\sqrt{1-4x^2}} = \frac{4(1-4x^2)}{\sqrt{1-4x^2}} \] Now, substituting back into the derivative of \( y_1 \): \[ \frac{dy_1}{dx} = \frac{1}{\sqrt{1 - (4x\sqrt{1-4x^2})^2}} \cdot \frac{du}{dx} = \frac{1}{\sqrt{1 - 16x^2(1-4x^2)}} \cdot \frac{4(1-4x^2)}{\sqrt{1-4x^2}} \] ### Step 3: Simplify \( \frac{dy_1}{dx} \) Now we simplify \( 1 - 16x^2(1-4x^2) \): \[ 1 - 16x^2 + 64x^4 = (1 - 16x^2 + 64x^4) \] Thus, \[ \frac{dy_1}{dx} = \frac{4(1-4x^2)}{\sqrt{(1 - 16x^2 + 64x^4)(1-4x^2)}} \] ### Step 4: Differentiate \( y_2 \) with respect to \( x \) Now we differentiate \( y_2 \): \[ \frac{dy_2}{dx} = \frac{d}{dx}(\sqrt{1-4x^2}) = -\frac{4x}{\sqrt{1-4x^2}} \] ### Step 5: Find \( \frac{dy_1}{dy_2} \) Now, we can find \( \frac{dy_1}{dy_2} \) using the chain rule: \[ \frac{dy_1}{dy_2} = \frac{dy_1/dx}{dy_2/dx} = \frac{\frac{4(1-4x^2)}{\sqrt{(1 - 16x^2 + 64x^4)(1-4x^2)}}}{-\frac{4x}{\sqrt{1-4x^2}}} \] This simplifies to: \[ \frac{dy_1}{dy_2} = -\frac{(1-4x^2)\sqrt{1-4x^2}}{x\sqrt{1 - 16x^2 + 64x^4}} \] ### Final Result Thus, the derivative of \( \sin^{-1}(4x\sqrt{1-4x^2}) \) with respect to \( \sqrt{1-4x^2} \) is: \[ \frac{dy_1}{dy_2} = -\frac{(1-4x^2)\sqrt{1-4x^2}}{x\sqrt{1 - 16x^2 + 64x^4}} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 8|14 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 9|3 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|18 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

Differentiate sin^(-1)(2xsqrt(1-x^2)),

Differentiate tan^-1((4sqrt(x))/(1-4x))

Differentiate sin^(-1)\ (1)/(sqrt(x+1))

Differentiate sin^(-1)'(1)/(sqrt(x+1))

Differentiate cos^(-1)(2xsqrt(1-x^2)) -1/(sqrt(2))

Differentiate tan^(-1)(( sqrt(1+x^(2))-1)/(x))

Differentiate sin^(-1)sqrt(1-x^2) with respect to x

Differentiate sin^(-1)(2xsqrt(1-x^2)) with respect to x'

Differentiate sin^(-1)(2xsqrt(1-x^2)) with respect to x .

Differentiate sin^(-1)(2xsqrt(1-x^2)) with respect to x ,