Home
Class 12
MATHS
Let g(x) be the inverse of an invertible...

Let `g(x)` be the inverse of an invertible function `f(x),` which is differentiable for all real `xdot` Then `g^(f(x))` equals. `-(f^(x))/((f^'(x))^3)` (b) `(f^(prime)(x)f^(x)-(f^(prime)(x))^3)/(f^(prime)(x))` `(f^(prime)(x)f^(x)-(f^(prime)(x))^2)/((f^(prime)(x))^2)` (d) none of these

Text Solution

Verified by Experts

The correct Answer is:
`-(f''(x))/((f'(x))^(3))`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 9|3 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

Let g(x) be the inverse of an invertible function f(x), which is differentiable for all real xdot Then g^('')(f(x)) equals. (a) -(f^('')(x))/((f^'(x))^3) (b) (f^(prime)(x)f^('')(x)-(f^(prime)(x))^3)/(f^(prime)(x)) (c) (f^(prime)(x)f^('')(x)-(f^(prime)(x))^2)/((f^(prime)(x))^2) (d) none of these

Let g(x) be the inverse of an invertible function f(x) which is differentiable at x=c . Then g^(prime)(f(x)) equal. (a) f^(prime)(c) (b) 1/(f^(prime)(c)) (c) f(c) (d) none of these

Let g(x) be the inverse of an invertible function f(x) which is derivable at x=3 . If f(3)=9 and f^(prime)(3)=9 , write the value of g^(prime)(9) .

If differentiable function f(x) in inverse of g(x) then f^(g(x)) is equal to (g^(x))/((g^(prime)(x))^3) 2. 0 3. (g^(x))/((g^(prime)(x))^2) 4. 1

int \ {f(x)*g^(prime)(x)-f^(prime)(x)g(x))/(f(x)*g(x)){logg(x)-logf(x)} \ dx

Suppose f and g are functions having second derivative f'' and g' ' everywhere. If f(x)dotg(x)=1 for all x and f^(prime) and g' are never zero, then (f^('')(x))/(f^(prime)(x))-(g^('')(x))/(g^(prime)(x)) is equal (a) (-2f^(prime)(x))/f (b) (2g^(prime)(x))/(g(x)) (c) (-f^(prime)(x))/(f(x)) (d) (2f^(prime)(x))/(f(x))

Suppose that f(x) isa quadratic expresson positive for all real xdot If g(x)=f(x)+f^(prime)(x)+f^(prime prime)(x), then for any real x

If f(x-y), f(x) f(y) and f(x+y) are in A.P. for all x , y ,and f(0)!=0, then (a) f(4)=f(-4) (b) f(2)+f(-2)=0 (c) f^(prime)(4)+f^(prime)(-4)=0 (d) f^(prime)(2)=f^(prime)(-2)

If f(x)=|x-a|varphi(x), where varphi(x) is continuous function, then (a) f^(prime)(a^+)=varphi(a) (b) f^(prime)(a^-)=-varphi(a) (c) f^(prime)(a^+)=f^(prime)(a^-) (d) none of these

If f(x)=(x+3)/(5x^2+x-1) and g(x)=(2x+3x^2)/(20+2x-x^2) such that f(x) and g(x) are differentiable functions in their domains, then which of the following is/are true (a) 2f^(prime)(2)+g^(prime)(1)=0 (b) 2f^(prime)(2)-g^(prime)(1)=0 (c) f^(prime)(1)+2g^(prime)(2)=0 (d) f^(prime)(1)-2g^(prime)(2)=0