Home
Class 12
MATHS
Find the domain of f(x)=sqrt(((1-5^x)/(7...

Find the domain of `f(x)=sqrt(((1-5^x)/(7^(-1)-7)))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(x) = \sqrt{\frac{1 - 5^x}{7^{-x} - 7}} \), we need to ensure that the expression inside the square root is non-negative and that the denominator is not zero. ### Step 1: Set up the inequality The expression inside the square root must be greater than or equal to zero: \[ \frac{1 - 5^x}{7^{-x} - 7} \geq 0 \] ### Step 2: Identify when the numerator is zero The numerator \( 1 - 5^x = 0 \) gives us: \[ 5^x = 1 \implies x = 0 \] So, \( x = 0 \) is a critical point. ### Step 3: Identify when the denominator is zero The denominator \( 7^{-x} - 7 = 0 \) gives us: \[ 7^{-x} = 7 \implies -x = 1 \implies x = -1 \] So, \( x = -1 \) is another critical point. ### Step 4: Analyze the intervals The critical points divide the number line into intervals: 1. \( (-\infty, -1) \) 2. \( (-1, 0) \) 3. \( (0, \infty) \) We will test a point from each interval to determine the sign of the expression \( \frac{1 - 5^x}{7^{-x} - 7} \). - **Interval 1: \( x < -1 \) (e.g., \( x = -2 \))** \[ 1 - 5^{-2} = 1 - \frac{1}{25} = \frac{24}{25} > 0 \] \[ 7^{-(-2)} - 7 = 7^2 - 7 = 49 - 7 = 42 > 0 \] Thus, \( \frac{1 - 5^{-2}}{7^{2} - 7} > 0 \). - **Interval 2: \( -1 < x < 0 \) (e.g., \( x = -0.5 \))** \[ 1 - 5^{-0.5} = 1 - \sqrt{5} < 0 \] \[ 7^{-(-0.5)} - 7 = 7^{0.5} - 7 < 0 \] Thus, \( \frac{1 - 5^{-0.5}}{7^{0.5} - 7} > 0 \). - **Interval 3: \( x > 0 \) (e.g., \( x = 1 \))** \[ 1 - 5^{1} = 1 - 5 < 0 \] \[ 7^{-1} - 7 = \frac{1}{7} - 7 < 0 \] Thus, \( \frac{1 - 5^{1}}{7^{-1} - 7} > 0 \). ### Step 5: Combine the results From the analysis: - The expression is non-negative in the intervals \( (-\infty, -1) \) and \( (0, \infty) \). - At \( x = 0 \), the expression equals zero. - At \( x = -1 \), the expression is undefined. ### Final Domain Thus, the domain of the function is: \[ \text{Domain} = (-\infty, -1) \cup [0, \infty) \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|6 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos

Similar Questions

Explore conceptually related problems

Find the domain of f(x)=sqrt(((1-5^x)/(7^(-x)-7)))

Find the domain of f(x)=(1)/(sqrt(5-x)

Find the domain of f(x)=1/(sqrt(x-|x|))

Find the domain of f(x)=sqrt((1-|x|)/(|x|-2))

Find the domain of f(x) = sqrt(x-11) .

Find the domain of f(x) = sqrt(x-1) .

Find the domain of f(x)=1/(sqrt(x+|x|))

Find the domain of f(x)=sqrt(cos^(-1)x-sin^(-1)x)

Find the domain of f(x)=sqrt(cos^(-1)x-sin^(-1)x)

Find the domain f(x) = sqrt(3x - 5) .