Home
Class 12
MATHS
The domain of the function f(x)=sqrt(a...

The domain of the function
`f(x)=sqrt(abs(sin^(-1)(sinx))-cos^(-1)(cosx))` in `[0,2pi]` is

A

`[0,pi/2] cup [(3pi)/2,2pi]`

B

`[pi,2pi]`

C

`[0,pi]-{pi/2}`

D

`[0,2pi]-{pi/2,(3pi)/2}`

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(x) = \sqrt{|\sin^{-1}(\sin x) - \cos^{-1}(\cos x)|} \) in the interval \([0, 2\pi]\), we will analyze the components of the function step by step. ### Step 1: Understanding the components 1. **Sine and Cosine Inverses**: - The function \( \sin^{-1}(\sin x) \) will return values based on the range of \( x \). Specifically, it will yield: - \( x \) for \( 0 \leq x \leq \frac{\pi}{2} \) - \( \pi - x \) for \( \frac{\pi}{2} < x \leq \pi \) - \( x - 2\pi \) for \( \pi < x \leq \frac{3\pi}{2} \) - \( 2\pi - x \) for \( \frac{3\pi}{2} < x \leq 2\pi \) - The function \( \cos^{-1}(\cos x) \) will yield: - \( x \) for \( 0 \leq x \leq \pi \) - \( 2\pi - x \) for \( \pi < x \leq 2\pi \) ### Step 2: Analyzing the intervals Now we will analyze the function \( f(x) \) in the four intervals of \([0, 2\pi]\): #### Interval 1: \( [0, \frac{\pi}{2}] \) - Here, \( \sin^{-1}(\sin x) = x \) and \( \cos^{-1}(\cos x) = x \). - Thus, \( f(x) = \sqrt{|x - x|} = \sqrt{0} = 0 \). - This is valid, so this interval is in the domain. #### Interval 2: \( [\frac{\pi}{2}, \pi] \) - Here, \( \sin^{-1}(\sin x) = \pi - x \) and \( \cos^{-1}(\cos x) = x \). - Thus, \( f(x) = \sqrt{|(\pi - x) - x|} = \sqrt{|\pi - 2x|} \). - For \( f(x) \) to be defined, \( \pi - 2x \geq 0 \) must hold, leading to \( x \leq \frac{\pi}{2} \). - However, since we are in the interval \( [\frac{\pi}{2}, \pi] \), the only valid point is \( x = \frac{\pi}{2} \). - Thus, this interval contributes only the endpoint \( \frac{\pi}{2} \) to the domain. #### Interval 3: \( [\pi, \frac{3\pi}{2}] \) - Here, \( \sin^{-1}(\sin x) = x - 2\pi \) and \( \cos^{-1}(\cos x) = x \). - Thus, \( f(x) = \sqrt{|(x - 2\pi) - x|} = \sqrt{| -2\pi |} \), which is not valid since it results in a negative value under the square root. - Therefore, this interval is not in the domain. #### Interval 4: \( [\frac{3\pi}{2}, 2\pi] \) - Here, \( \sin^{-1}(\sin x) = 2\pi - x \) and \( \cos^{-1}(\cos x) = 2\pi - x \). - Thus, \( f(x) = \sqrt{|(2\pi - x) - (2\pi - x)|} = \sqrt{0} = 0 \). - This is valid, so this interval is in the domain. ### Conclusion The valid intervals for the domain of \( f(x) \) in \([0, 2\pi]\) are: - \( [0, \frac{\pi}{2}] \) - \( [\frac{3\pi}{2}, 2\pi] \) Thus, the domain of the function \( f(x) \) is: \[ \text{Domain of } f(x) = [0, \frac{\pi}{2}] \cup [\frac{3\pi}{2}, 2\pi] \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|6 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos

Similar Questions

Explore conceptually related problems

The domain of the function f(x)=sqrt(sin x-1) is

The domain of the function f(x)=sqrt(log((1)/(|sinx|)))

Range of the function f(x)=sqrt(abs(sin^(-1)abs(sinx))-abs(cos^(-1)abs(cosx))) is

The domain of the function f(x)=sqrt(cos^(- 1)((1-|x|)/2)) is

The domain of the function f(x)= sqrt(sin^(-1)x-(pi)/(4))+log(1-x) is :

Find the domain of the function f(x)=sin^(-1)sqrt(x-1)

Find the domain of the function f(x)=sin^(-1)sqrt(x-1)

The natural domain of the function f(x)=sqrt(sin^(-1)(2x)+(pi)/(3)) is

Find the domain of the function f(x)=1/(1+2sinx)

Find the domain of the function f(x)=1/(1+2sinx)