Home
Class 12
MATHS
Given that y=2[x]+3 and y=3[x-2]+5 then ...

Given that `y=2[x]+3` and `y=3[x-2]+5` then find the value of `[x+y]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given equations: 1. **Given Equations:** \[ y = 2[x] + 3 \] \[ y = 3[x - 2] + 5 \] 2. **Equating the Two Expressions for \( y \):** Since both expressions represent \( y \), we can set them equal to each other: \[ 2[x] + 3 = 3[x - 2] + 5 \] 3. **Expanding the Right Side:** We expand the right side: \[ 3[x - 2] + 5 = 3[x] - 6 + 5 = 3[x] - 1 \] So, we have: \[ 2[x] + 3 = 3[x] - 1 \] 4. **Rearranging the Equation:** Now, we rearrange the equation to isolate terms involving \([x]\): \[ 2[x] + 3 + 1 = 3[x] \] \[ 2[x] + 4 = 3[x] \] Subtract \( 2[x] \) from both sides: \[ 4 = 3[x] - 2[x] \] \[ 4 = [x] \] 5. **Finding the Range of \( x \):** Since \([x] = 4\), this means \( x \) can take values in the range: \[ 4 \leq x < 5 \] 6. **Finding \( y \):** Now, we substitute \([x] = 4\) back into the equation for \( y \): \[ y = 2[4] + 3 = 2 \cdot 4 + 3 = 8 + 3 = 11 \] 7. **Finding \( [x + y] \):** Now we need to find \([x + y]\): \[ x + y = x + 11 \] Since \( 4 \leq x < 5 \), we can write: \[ 4 + 11 \leq x + 11 < 5 + 11 \] \[ 15 \leq x + 11 < 16 \] Therefore, the greatest integer function gives us: \[ [x + y] = 15 \] 8. **Final Answer:** Thus, the value of \([x + y]\) is: \[ \boxed{15} \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|6 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos

Similar Questions

Explore conceptually related problems

If y=3[x]+1=2[x-3]+5, find the value of [x+y]

If x=2 and y=5 find the values of : 2x+3y

If x=2 and y=5 find the values of : 3x-4y

If 2x+3y=13 and x y=6 , find the value of 8x^3+27 y^3

If 2x+3y=8 and x y=2 , find the value of 4x^2+9y^2

If 2x+3y=13 and x y=6 , find the value of 8x^3+27\ y^3

If 3x+2y=12 and x y=6 , find the value of 9x^2+4y^2

If x=2 and y=5 find the values of : (3x)/(2y)

If 2x+3y=13 and x y=6, find the value of 8x^3+27 y^3

If 3x-2y=11 and x y=12 , find the value of 27\ x^3-8y^3