Home
Class 12
MATHS
If the domain of y=f(x) is [-3,2], then ...

If the domain of `y=f(x)` is `[-3,2]`, then find the domain of `g(x)=f([x]),` where [] denotes the greatest integer function.

Text Solution

Verified by Experts

The correct Answer is:
Domain `g(x) in [-2,3] or [-2,3)`
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|6 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos

Similar Questions

Explore conceptually related problems

If the domain of y=f(x)i s[-3,2], then find the domain of g(x)=f(|[x]|),w h e re \ [.] denotes the greatest integer function.

If the domain of y=f(x)i s[-3,2], then find the domain of g(x)=f(|[x]|),w h e r[] denotes the greatest integer function.

If domain of y=f(x) is xin[-3,2] , then the domain of f([x]) is

f(x)=log(x-[x]) , where [*] denotes the greatest integer function. find the domain of f(x).

The function, f(x)=[|x|]-|[x]| where [] denotes greatest integer function:

The function f(x)=[x]^(2)+[-x^(2)] , where [.] denotes the greatest integer function, is

Find the domain of the function f(x)=log_(e)(x-[x]) , where [.] denotes the greatest integer function.

Domain of f(x)=log(x^2+5x+6)/([x]-1) where [.] denotes greatest integer function:

Domain of the function f(x)=(1)/([sinx-1]) (where [.] denotes the greatest integer function) is

The period of the function f(x)=Sin(x +3-[x+3]) where [] denotes the greatest integer function