Home
Class 12
MATHS
Range of the function f(x)=(cos^(-1)ab...

Range of the function
`f(x)=(cos^(-1)abs(1-x^(2)))` is

A

`[0,pi/2]`

B

`[0,pi/3]`

C

`(o,pi)`

D

`(pi/2,pi)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = \cos^{-1}(|1 - x^2|) \), we will follow these steps: ### Step 1: Determine the domain of the function The function \( \cos^{-1}(y) \) is defined for \( y \) in the interval \([-1, 1]\). Therefore, we need to ensure that \( |1 - x^2| \) lies within this interval. ### Step 2: Analyze the expression \( |1 - x^2| \) We can break this down into two cases based on the value of \( 1 - x^2 \): 1. **Case 1**: \( 1 - x^2 \geq 0 \) (which implies \( x^2 \leq 1 \) or \( -1 \leq x \leq 1 \)) - Here, \( |1 - x^2| = 1 - x^2 \). - The values of \( 1 - x^2 \) range from \( 1 \) (when \( x = 0 \)) to \( 0 \) (when \( x = \pm 1 \)). 2. **Case 2**: \( 1 - x^2 < 0 \) (which implies \( x^2 > 1 \) or \( x < -1 \) or \( x > 1 \)) - Here, \( |1 - x^2| = x^2 - 1 \). - The values of \( x^2 - 1 \) start from \( 0 \) (when \( x = \pm 1 \)) and go to \( \infty \) as \( |x| \) increases. ### Step 3: Find the range of \( |1 - x^2| \) From the analysis: - In **Case 1**, \( |1 - x^2| \) ranges from \( 0 \) to \( 1 \). - In **Case 2**, \( |1 - x^2| \) starts from \( 0 \) and goes to \( \infty \). However, since \( \cos^{-1}(y) \) is only defined for \( y \) in \([-1, 1]\), we restrict our consideration to the interval \( [0, 1] \). ### Step 4: Determine the range of \( f(x) = \cos^{-1}(|1 - x^2|) \) - When \( |1 - x^2| = 0 \) (at \( x = \pm 1 \)), \( f(x) = \cos^{-1}(0) = \frac{\pi}{2} \). - When \( |1 - x^2| = 1 \) (at \( x = 0 \)), \( f(x) = \cos^{-1}(1) = 0 \). Thus, as \( |1 - x^2| \) varies from \( 0 \) to \( 1 \), \( f(x) \) will take values from \( \frac{\pi}{2} \) to \( 0 \). ### Step 5: Final range of the function The range of the function \( f(x) = \cos^{-1}(|1 - x^2|) \) is: \[ \text{Range} = [0, \frac{\pi}{2}] \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|6 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos

Similar Questions

Explore conceptually related problems

Domain and range of the function f(x)=cos(sqrt(1-x^(2))) are

The domain of the function f(x)=sqrt(cos^(- 1)((1-|x|)/2)) is

If the range of the function f(x)= cot^(-1)((x^(2))/(x^(2)+1)) is (a, b), find the value of ((b)/(a)+2) .

Range of the function f(x)= x cos( 1/x), xgt1

Range of the function f(x)= x cos( 1/x), xgt1

Range of the function f(x)=2+|x^(2)+1| is

Range of the function f(x)=sqrt(abs(sin^(-1)abs(sinx))-abs(cos^(-1)abs(cosx))) is

The function f(x)=cos(log(x+sqrt(x^2+1))) is :

Range of the function f(x)=cos^(-1)x+2cot^(-1)x+3cosec^(-1)x is equal to

Range of the function f(x)=((x-2)^2)/((x-1)(x-3)) is