Home
Class 12
MATHS
The range of the function f(x)=1/abs(s...

The range of the function
`f(x)=1/abs(sinx)+1/abs(cosx)` is

A

`[2sqrt(2),infty)`

B

`(sqrt(2),2sqrt(2))`

C

`(0,2sqrt(2))`

D

`(2sqrt(2),4)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = \frac{1}{|\sin x|} + \frac{1}{|\cos x|} \), we can follow these steps: ### Step 1: Identify the domain of the function Since \( f(x) \) involves \( |\sin x| \) and \( |\cos x| \) in the denominator, we need to ensure that these values are not zero. Therefore, we have: - \( \sin x \neq 0 \) which implies \( x \neq n\pi \) for any integer \( n \). - \( \cos x \neq 0 \) which implies \( x \neq \frac{(2n + 1)\pi}{2} \) for any integer \( n \). ### Step 2: Analyze the behavior of \( |\sin x| \) and \( |\cos x| \) The values of \( |\sin x| \) and \( |\cos x| \) both range from 0 to 1. However, they cannot be equal to 0, so: - \( 0 < |\sin x| \leq 1 \) - \( 0 < |\cos x| \leq 1 \) ### Step 3: Apply the Arithmetic Mean-Geometric Mean Inequality (AM-GM) Using the AM-GM inequality: \[ \frac{1}{|\sin x|} + \frac{1}{|\cos x|} \geq 2 \sqrt{\frac{1}{|\sin x| \cdot |\cos x|}} \] This implies: \[ f(x) \geq 2 \sqrt{\frac{1}{|\sin x| \cdot |\cos x|}} \] ### Step 4: Express \( |\sin x| \cdot |\cos x| \) Using the identity \( |\sin 2x| = 2 |\sin x| |\cos x| \), we can rewrite: \[ |\sin x| \cdot |\cos x| = \frac{|\sin 2x|}{2} \] Thus, we have: \[ f(x) \geq 2 \sqrt{\frac{2}{|\sin 2x|}} \] ### Step 5: Determine the minimum value of \( f(x) \) The maximum value of \( |\sin 2x| \) is 1, which occurs when \( 2x = \frac{\pi}{2} + n\pi \) for any integer \( n \). Therefore: \[ f(x) \geq 2 \sqrt{2} \] ### Step 6: Conclusion about the range Since \( f(x) \) can increase without bound as \( |\sin x| \) or \( |\cos x| \) approaches 0, the range of \( f(x) \) is: \[ [2\sqrt{2}, \infty) \] ### Final Answer The range of the function \( f(x) = \frac{1}{|\sin x|} + \frac{1}{|\cos x|} \) is \( [2\sqrt{2}, \infty) \).
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|6 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos

Similar Questions

Explore conceptually related problems

The period of f(x)=cos(abs(sinx)-abs(cosx)) is

The extremum values of the function f(x)=1/(sinx+ 4)-1/ (cosx-4) , where x in R

Find the period of f(x)=abs(sinx)+abs(cosx) .

The range of the function f(x)=cos^(2)x -5 cosx -9 is :

Range of the function f(x)=sqrt(abs(sin^(-1)abs(sinx))-abs(cos^(-1)abs(cosx))) is

The domain of the function f(x)=sqrt(log_(sinx+cosx)(abs(cosx)+cosx)), 0 le x le pi is

Find the range of the function " " f(x)=(sin^(2)x+sinx-1)/(sin^(2)x-sinx+2) .

The domain of the function f(x)=sqrt(abs(sin^(-1)(sinx))-cos^(-1)(cosx)) in [0,2pi] is

Find the periods (if periodic) of the following functions, where [.] denotes the greatest integer function f(x)=(abs(sinx+cosx))/(abs(sinx)+abs(cosx))

Range of the function f(x)=(cos^(-1)abs(1-x^(2))) is