Home
Class 12
MATHS
The range of the function sin^2x-5sinx -...

The range of the function `sin^2x-5sinx -6` is

A

[-10,0]

B

[-1,1]

C

`[0,pi]`

D

`[-49/4,0]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = \sin^2 x - 5 \sin x - 6 \), we can follow these steps: ### Step 1: Rewrite the function We start with the function: \[ f(x) = \sin^2 x - 5 \sin x - 6 \] Let \( y = \sin x \). Then, we can rewrite the function as: \[ f(y) = y^2 - 5y - 6 \] ### Step 2: Identify the quadratic form The function \( f(y) = y^2 - 5y - 6 \) is a quadratic function in the standard form \( ay^2 + by + c \), where \( a = 1 \), \( b = -5 \), and \( c = -6 \). ### Step 3: Find the vertex of the quadratic The vertex of a quadratic function \( ax^2 + bx + c \) can be found using the formula: \[ y = -\frac{b}{2a} \] Substituting the values of \( a \) and \( b \): \[ y = -\frac{-5}{2 \cdot 1} = \frac{5}{2} \] ### Step 4: Determine the maximum and minimum values Since \( \sin x \) can only take values in the range \([-1, 1]\), we need to evaluate \( f(y) \) at the endpoints of this interval. 1. **Calculate \( f(-1) \)**: \[ f(-1) = (-1)^2 - 5(-1) - 6 = 1 + 5 - 6 = 0 \] 2. **Calculate \( f(1) \)**: \[ f(1) = (1)^2 - 5(1) - 6 = 1 - 5 - 6 = -10 \] ### Step 5: Determine the range From the calculations: - The maximum value occurs at \( y = -1 \) and is \( 0 \). - The minimum value occurs at \( y = 1 \) and is \( -10 \). Thus, the range of the function \( f(x) = \sin^2 x - 5 \sin x - 6 \) is: \[ [-10, 0] \] ### Final Answer The range of the function is \([-10, 0]\). ---
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|6 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos

Similar Questions

Explore conceptually related problems

The range of the function sin^-1(x^2+2 x),x > 0 is

The range of the function f(x)=1+sinx+sin^(3)x+sin^(5)x+…… when x in (-pi//2,pi//2) , is

The range of the function f(x)=cos^(2)x -5 cosx -9 is :

If range of the function f(x)=(2sin^2x+2sinx+3)/(sin^2x+sinx+1) is [p ,q], then the value of 3 p+6q+1 is (a) (10)/3 (b) 7/3 (c) 28 (d) None of these

The range of the function f(x)=3|sin x|-2|cos x| is :

The range of the function f(x)=cosec^(-1)[sinx] " in " [0,2pi] , where [*] denotes the greatest integer function , is

The range of the function f(x) =[sinx+cosx] (where [x] denotes the greatest integer function) is f(x) in :

The function f(x)=sin^(-1)(sinx) , is

Find the range of the function " " f(x)=(sin^(2)x+sinx-1)/(sin^(2)x-sinx+2) .

What is the range of the function f(x)=5-6sin(pix+1) ?