Home
Class 12
MATHS
Find out whether the given function is e...

Find out whether the given function is even, odd or neither even nor odd
`" where " f(x)={{:(xabs(x),",",x le -1),([1+x]+[1-x],",",-1 lt x lt 1),(-xabs(x),",",x ge 1 ):}`
where `||` and [] represent then modulus and greater integer functions.

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the given function \( f(x) \) is even, odd, or neither, we will analyze the function based on its definition and apply the properties of even and odd functions. ### Step 1: Define the function The function is defined piecewise as follows: \[ f(x) = \begin{cases} x |x| & \text{if } x \leq -1 \\ (1+x) + (1-x) & \text{if } -1 < x < 1 \\ -x |x| & \text{if } x \geq 1 \end{cases} \] ### Step 2: Calculate \( f(-x) \) To check if the function is even or odd, we need to find \( f(-x) \) for each piece of the function. 1. **For \( x \leq -1 \)**: - Here, \( -x \geq 1 \), so: \[ f(-x) = -x | -x | = -x(-x) = x^2 \] 2. **For \( -1 < x < 1 \)**: - Here, \( -x \) will be in the range \( -1 < -x < 1 \), so: \[ f(-x) = (1 - x) + (1 + x) = 2 \] 3. **For \( x \geq 1 \)**: - Here, \( -x \leq -1 \), so: \[ f(-x) = -(-x)|-x| = x|x| = x^2 \] ### Step 3: Compare \( f(-x) \) with \( f(x) \) Now we will compare \( f(-x) \) with \( f(x) \) for each case: 1. **For \( x \leq -1 \)**: - \( f(x) = x |x| = x(-x) = -x^2 \) - \( f(-x) = x^2 \) - Here, \( f(-x) \neq f(x) \) and \( f(-x) \neq -f(x) \). 2. **For \( -1 < x < 1 \)**: - \( f(x) = (1+x) + (1-x) = 2 \) - \( f(-x) = 2 \) - Here, \( f(-x) = f(x) \), indicating that this part is even. 3. **For \( x \geq 1 \)**: - \( f(x) = -x |x| = -x^2 \) - \( f(-x) = x^2 \) - Here, \( f(-x) \neq f(x) \) and \( f(-x) \neq -f(x) \). ### Conclusion Since \( f(-x) \) is equal to \( f(x) \) in the interval \( -1 < x < 1 \) but not in the other intervals, the function does not satisfy the conditions for being an even or odd function overall. Therefore, the function is **neither even nor odd**.
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|6 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos

Similar Questions

Explore conceptually related problems

Determine whether the following functions are even or odd or neither even nor odd: f(x)={(|lne^(x)|,,,xle-1),([2+x]+[2-x],,,-1ltxlt1),(e^(lnx),,,xge1):} ,where [.] is GIF

Determine whether the following functions are even or odd or neither even nor odd: f(x)=(x^(2)-1)|x|

Determine whether the following functions are even or odd or neither even nor odd: x+x^(2)

Determine whether the following functions are even or odd or neither even nor odd: f(x)=sinx+cosx

Determine whether the following functions are even or odd or neither even nor odd: sin(x^(2)+1)

Determine whether the following functions are even or odd or neither even nor odd: f(x)=x((a^(x)-1)/(a^(x)+1))

Determine whether the following function are even/odd/neither even nor odd? f(x)=xlog(x+sqrt(x^(2)+1))

f (x)= {{:(2(x+1),,, x le -1),( sqrt(1- x^(2)),,, -1 lt x lt 1), (|||x|-1|-1|,,, x ge1 ):} , then:

Identify the given functions whether odd or even or neither: f(x)={(x|x| ,, xlt=-1),([x+1]+[1-x] ,, -1lt x lt1),(-x|x| ,, xgt=1):}

Determine whether the following function are even/odd/neither even nor odd? f:[-2,3]to[0,9],f(x)=x^(2)