Home
Class 12
MATHS
If f(x)=2x+abs(x),g(x)=1/3(2x-abs(x)) an...

If `f(x)=2x+abs(x),g(x)=1/3(2x-abs(x))` and h(x)=f(g(x)), domain of `underbrace(sin^(-1)(h(h(h(h...h(x)...)))))_("n times")` is

A

[-1,1]

B

`[-1,-1/2] cup [1/2,1]`

C

`[-1,-1/2]`

D

`[1/2,1]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the functions \( f(x) \), \( g(x) \), and \( h(x) \) and then determine the domain of \( \sin^{-1}(h(h(h(...h(x)...)))) \) for \( n \) times. ### Step 1: Define the functions Given: - \( f(x) = 2x + |x| \) - \( g(x) = \frac{1}{3}(2x - |x|) \) ### Step 2: Analyze \( f(x) \) The absolute value function \( |x| \) behaves differently based on the sign of \( x \): - If \( x \geq 0 \): \( |x| = x \) \[ f(x) = 2x + x = 3x \] - If \( x < 0 \): \( |x| = -x \) \[ f(x) = 2x - x = x \] ### Step 3: Analyze \( g(x) \) Similarly, we analyze \( g(x) \): - If \( x \geq 0 \): \( |x| = x \) \[ g(x) = \frac{1}{3}(2x - x) = \frac{1}{3}x \] - If \( x < 0 \): \( |x| = -x \) \[ g(x) = \frac{1}{3}(2x + x) = x \] ### Step 4: Define \( h(x) \) Now we define \( h(x) = f(g(x)) \): - For \( x \geq 0 \): \[ g(x) = \frac{1}{3}x \implies h(x) = f\left(\frac{1}{3}x\right) = 3\left(\frac{1}{3}x\right) = x \] - For \( x < 0 \): \[ g(x) = x \implies h(x) = f(x) = x \] Thus, we conclude: \[ h(x) = x \quad \text{for all } x \] ### Step 5: Analyze \( \sin^{-1}(h(h(h(...h(x)...)))) \) Since \( h(x) = x \), applying \( h \) any number of times will still yield \( x \): \[ h(h(h(...h(x)...))) = x \] ### Step 6: Determine the domain of \( \sin^{-1}(x) \) The function \( \sin^{-1}(x) \) is defined for: \[ -1 \leq x \leq 1 \] ### Conclusion Thus, the domain of \( \sin^{-1}(h(h(h(...h(x)...)))) \) is: \[ \text{Domain: } [-1, 1] \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|6 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos

Similar Questions

Explore conceptually related problems

If f(x)=2x+3, g(x)=1-2x and h(x) =3x then find fo(goh)

If f(x)=x+4, g(x)=2x-1 and h(x) =3x then find (fog)oh .

If f(x)=x-1, g(x)=3x , and h(x)=5/x , then f^(-1)(g(h(5))) =

If f(x)=sinx,g(x)=x^(2)andh(x)=logx. IF F(x)=h(f(g(x))), then F'(x) is

Suppose f, g, and h be three real valued function defined on R. Let f(x) = 2x + |x|, g(x) = (1)/(3)(2x-|x|) and h(x) = f(g(x)) The domain of definition of the function l (x) = sin^(-1) ( f(x) - g (x) ) is equal to

Suppose f, g and h be three real valued function defined on R Let f(x) =2x+|x| g(x) =1/3(2x-|x|) h(x) =f(g(x)) The range of the function k(x) = 1 + 1/pi(cos^(-1)h(x) + cot^(-1)(h(x))) is equal to

If f(x)=log_(10)x and g(x)=e^(ln x) and h(x)=f [g(x)] , then find the value of h(10).

If f(x)=sin^(2)x, g(x)=sqrtx and h(x)=cos^(-1)x, 0 le xle 1, then

If f(x)=sqrt(x^2+1),\ \ g(x)=(x+1)/(x^2+1) and h(x)=2x-3 , then find f^(prime)(h^(prime)(g^(prime)(x))) .

If f(x) = sqrtx , g(x) = root(3)(x+1) , and h(x) = root(4)(x+2), " then "f(g(h(2)))=