Home
Class 12
MATHS
Let f :[1/2,oo)rarr[3/4,oo), where f(x)=...

Let `f :[1/2,oo)rarr[3/4,oo),` where `f(x)=x^2-x+1.` Find the inverse of f(x). Hence or otherwise solve the equation, `x^2-x+1=1/2+sqrt(x-3/4.`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the function \( f(x) = x^2 - x + 1 \) defined on the interval \([1/2, \infty)\) and then solve the equation \( x^2 - x + 1 = \frac{1}{2} + \sqrt{x - \frac{3}{4}} \), we will follow these steps: ### Step 1: Find the Inverse of \( f(x) \) 1. **Set \( y = f(x) \)**: \[ y = x^2 - x + 1 \] 2. **Rearrange the equation to solve for \( x \)**: \[ x^2 - x + (1 - y) = 0 \] This is a quadratic equation in \( x \). 3. **Use the quadratic formula**: The quadratic formula is given by: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1, b = -1, c = 1 - y \). Plugging in these values: \[ x = \frac{-(-1) \pm \sqrt{(-1)^2 - 4 \cdot 1 \cdot (1 - y)}}{2 \cdot 1} \] \[ x = \frac{1 \pm \sqrt{1 - 4(1 - y)}}{2} \] \[ x = \frac{1 \pm \sqrt{4y - 3}}{2} \] 4. **Select the appropriate root**: Since \( f(x) \) is increasing on the interval \([1/2, \infty)\), we take the positive root: \[ f^{-1}(y) = \frac{1 + \sqrt{4y - 3}}{2} \] ### Step 2: Solve the Equation Now we need to solve the equation: \[ x^2 - x + 1 = \frac{1}{2} + \sqrt{x - \frac{3}{4}} \] 1. **Substitute \( f(x) \)**: From the definition of \( f(x) \): \[ f(x) = \frac{1}{2} + \sqrt{x - \frac{3}{4}} \] 2. **Isolate the square root**: Rearranging gives: \[ x^2 - x + \frac{1}{2} = \sqrt{x - \frac{3}{4}} \] 3. **Square both sides**: \[ (x^2 - x + \frac{1}{2})^2 = x - \frac{3}{4} \] 4. **Expand the left side**: \[ (x^2 - x + \frac{1}{2})^2 = x^4 - 2x^3 + \frac{5}{2}x^2 - x + \frac{1}{4} \] 5. **Set the equation to zero**: \[ x^4 - 2x^3 + \frac{5}{2}x^2 - x + \frac{1}{4} - x + \frac{3}{4} = 0 \] \[ x^4 - 2x^3 + \frac{5}{2}x^2 - 2x + 1 = 0 \] 6. **Use numerical methods or graphing to find roots**: The roots can be found using numerical methods or graphing techniques. ### Final Solution After solving the polynomial, we find that \( x = 1 \) is a solution.
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|6 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos

Similar Questions

Explore conceptually related problems

If f :[2,oo)rarr(-oo,4], where f(x)=x(4-x) then find f^-1(x)

If f : [0, oo) rarr [0, oo) and f(x) = (x^(2))/(1+x^(4)) , then f is

Let f : [-1, -1/2] rarr [-1, 1] is defined by f(x)=4x^(3)-3x , then f^(-1) (x) is

Let f:(2,oo)to X be defined by f(x)= 4x-x^(2) . Then f is invertible, if X=

If f:[1, oo) rarr [1, oo) is defined as f(x) = 3^(x(x-2)) then f^(-1)(x) is equal to

Find the inverse of the function: f: R rarr (-oo,1)gi v e nb y\ f(x)=1-2^(-x)

Let f:[4,oo)to[4,oo) be defined by f(x)=5^(x^((x-4))) .Then f^(-1)(x) is

If f(x)=1-4x , and f^(-1)(x) is the inverse of f(x), then f(-3)f^(-1)(-3)=

If f(x)=(x-4)/(2sqrt(x)) , then find f'(1)

If f : [0, oo) rarr [2, oo) be defined by f(x) = x^(2) + 2, AA xx in R . Then find f^(-1) .