Home
Class 12
MATHS
Let f(x)=max{1+sinx,1,1-cosx}, x in [0...

Let `f(x)=max{1+sinx,1,1-cosx}, x in [0,2pi], and g(x)=max{1,|x-1|}, x in R.` Then

Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|6 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos

Similar Questions

Explore conceptually related problems

Let f(x)="max"{1+sin x ,1,1-cosx},x in [0,2pi],a n d g(x)=max{1,|x-1|}, x in Rdot Then (a) g(f(0))=1 (b) g(f(1))=1 (c) f(f(1))=1 (d) f(g(0))=1+sin1

Let f(x)="max"(1+s in x ,1,1-cosx),x in [0,2pi],a n dg(x)=max{1,|x-1|}, x in Rdot Then g(f(0))=1 (b) g(f(1))=1 f(f(1))=1 (d) f(g(0))= 1 + sin1

Let f(x)=min{1,cos x,1-sinx}, -pi le x le pi , Then, f(x) is

Sometimes functions are defined like f(x)=max{sinx,cosx} , then f(x) is splitted like f(x)={{:(cosx, x in (0,(pi)/(4)]),(sinx, x in ((pi)/(4),(pi)/(2)]):} etc. If f(x)=max{(1)/(2),sinx} , then f(x)=(1)/(2) is defined when x in

Sometimes functions are defined like f(x)=max{sinx,cosx} , then f(x) is splitted like f(x)={{:(cosx, x in (0,(pi)/(4)]),(sinx, x in ((pi)/(4),(pi)/(2)]):} etc. If f(x)=max{x^(2),2^(x)} ,then if x in (0,1) , f(x)=

Sometimes functions are defined like f(x)=max{sinx,cosx} , then f(x) is splitted like f(x)={{:(cosx, x in (0,(pi)/(4)]),(sinx, x in ((pi)/(4),(pi)/(2)]):} etc. If f(x)=min{tanx, cotx} then f(x)=1 when x=

Find critical points of f(x) =max (sinx cosx) AA , X in (0, 2pi) .

f:[0,2pi]rarr[-1,1] and g:[0,2pi]rarr[-1,1] be respectively given by f(x)=sin and g(x)=cosx . Define h:[0,2pi]rarr[-1,1] by h(x)={("max"{f(x),g(x)} "if"0lexlepi),("min"{f(x),g(x)} "if" piltxle2pi):} number of points at which h(x) is not differentiable is

The number of critical points of f(x)=max{sinx,cosx},AAx in(-2pi,2pi), is

Let f:R-> R and g:R-> R be respectively given by f(x) = |x| +1 and g(x) = x^2 + 1 . Define h:R-> R by h(x)={max{f(x), g(x)}, if xleq 0 and min{f(x), g(x)}, if x > 0 .The number of points at which h(x) is not differentiable is