Home
Class 12
MATHS
If log(10)(sin(x+pi/4))=(log(10)6-1)/2, ...

If `log_(10)(sin(x+pi/4))=(log_(10)6-1)/2`, the value of `log_(10)(sinx)+log_(10)(cosx)` is

A

-1

B

-2

C

2

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \log_{10}(\sin(x + \frac{\pi}{4})) = \frac{\log_{10}(6) - 1}{2} \) and find the value of \( \log_{10}(\sin x) + \log_{10}(\cos x) \), we can follow these steps: ### Step 1: Rewrite the given equation We start with the equation: \[ \log_{10}(\sin(x + \frac{\pi}{4})) = \frac{\log_{10}(6) - 1}{2} \] ### Step 2: Multiply both sides by 2 Multiply both sides by 2 to eliminate the fraction: \[ 2 \log_{10}(\sin(x + \frac{\pi}{4})) = \log_{10}(6) - 1 \] ### Step 3: Rewrite the right side We can rewrite \( -1 \) as \( \log_{10}(10^{-1}) \): \[ 2 \log_{10}(\sin(x + \frac{\pi}{4})) = \log_{10}(6) - \log_{10}(10) \] Using the property of logarithms \( \log_{10}(a) - \log_{10}(b) = \log_{10}\left(\frac{a}{b}\right) \), we get: \[ 2 \log_{10}(\sin(x + \frac{\pi}{4})) = \log_{10}\left(\frac{6}{10}\right) \] ### Step 4: Simplify the left side Using the property \( n \log_{10}(a) = \log_{10}(a^n) \): \[ \log_{10}(\sin^2(x + \frac{\pi}{4})) = \log_{10}\left(\frac{6}{10}\right) \] ### Step 5: Remove the logarithm Since the logarithms are equal, we can equate the arguments: \[ \sin^2(x + \frac{\pi}{4}) = \frac{6}{10} = \frac{3}{5} \] ### Step 6: Use the sine addition formula Using the sine addition formula: \[ \sin(x + \frac{\pi}{4}) = \sin x \cos \frac{\pi}{4} + \cos x \sin \frac{\pi}{4} = \frac{1}{\sqrt{2}}(\sin x + \cos x) \] Thus: \[ \sin^2(x + \frac{\pi}{4}) = \left(\frac{1}{\sqrt{2}}(\sin x + \cos x)\right)^2 \] This gives: \[ \frac{1}{2}(\sin x + \cos x)^2 = \frac{3}{5} \] ### Step 7: Solve for \( (\sin x + \cos x)^2 \) Multiply both sides by 2: \[ (\sin x + \cos x)^2 = \frac{6}{5} \] ### Step 8: Use the identity We know that: \[ \sin^2 x + \cos^2 x = 1 \] Thus: \[ (\sin x + \cos x)^2 = 1 + 2\sin x \cos x \] Setting this equal to our previous result: \[ 1 + 2\sin x \cos x = \frac{6}{5} \] ### Step 9: Solve for \( \sin x \cos x \) Subtract 1 from both sides: \[ 2\sin x \cos x = \frac{6}{5} - 1 = \frac{1}{5} \] Thus: \[ \sin x \cos x = \frac{1}{10} \] ### Step 10: Find \( \log_{10}(\sin x) + \log_{10}(\cos x) \) Using the logarithmic property: \[ \log_{10}(\sin x) + \log_{10}(\cos x) = \log_{10}(\sin x \cos x) \] Substituting the value we found: \[ \log_{10}(\sin x \cos x) = \log_{10}\left(\frac{1}{10}\right) = -1 \] ### Final Answer Thus, the value of \( \log_{10}(\sin x) + \log_{10}(\cos x) \) is: \[ \boxed{-1} \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|6 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos

Similar Questions

Explore conceptually related problems

The value of 6^(log_10 40)*5^(log_10 36) is

If log_(10) 4 = 0.6020 , find the value of : (i) log_(10) 8 (ii) log_(10) 2.5

If log_(10)m=(1)/(2) , then log_(10)10m^(2)=

If (log)_(10)sinx+(log)_(10)cosx=-1a n d(log)_(10)(sinx+cosx)=(((log)_(10)n)-1)/2, then the value of ' n//3' is_______

If "log"_(10) sin x+"log"_(10)cos x=-1 and "log"_(10)(sin x+cosx)=(("log"_(10)n)n-1)/(2) then the value of n is ____________

Express log_(10)2 + 1 in the form of log_(10)x .

If log_(10)5=a and log_(10)3=b ,then

If (1)/("log"_(x)10) = (2)/("log"_(a)10)-2 , then x =

If (log)_(10)2=0. 3010\ &(log)_(10)3=0. 4771.\ Find the value of (log)_(10)(2. 25)

If (log)_(10)2=0. 3010\ &(log)_(10)3=0. 4771.\ Find the value of (log)_(10)(2. 25)