Home
Class 12
MATHS
Let f be defined on the natural numbers ...

Let f be defined on the natural numbers as follow: f(1)=1 and for `n gt 1, f(n)=f[f(n-1)]+f[n-f(n-1)]`, the value of `1/(30)sum_(r=1)^(20)f(r)` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the function \( f(n) \) defined recursively and then compute the sum \( \frac{1}{30} \sum_{r=1}^{20} f(r) \). ### Step 1: Define the function \( f(n) \) We know: - \( f(1) = 1 \) - For \( n > 1 \), \( f(n) = f(f(n-1)) + f(n - f(n-1)) \) ### Step 2: Calculate values of \( f(n) \) for \( n = 2, 3, \ldots, 20 \) 1. **Calculate \( f(2) \)**: \[ f(2) = f(f(1)) + f(2 - f(1)) = f(1) + f(1) = 1 + 1 = 2 \] 2. **Calculate \( f(3) \)**: \[ f(3) = f(f(2)) + f(3 - f(2)) = f(2) + f(3 - 2) = 2 + f(1) = 2 + 1 = 3 \] 3. **Calculate \( f(4) \)**: \[ f(4) = f(f(3)) + f(4 - f(3)) = f(3) + f(4 - 3) = 3 + f(1) = 3 + 1 = 4 \] Continuing this pattern, we can see that: - \( f(5) = 5 \) - \( f(6) = 6 \) - \( f(7) = 7 \) - \( f(8) = 8 \) - \( f(9) = 9 \) - \( f(10) = 10 \) - \( f(11) = 11 \) - \( f(12) = 12 \) - \( f(13) = 13 \) - \( f(14) = 14 \) - \( f(15) = 15 \) - \( f(16) = 16 \) - \( f(17) = 17 \) - \( f(18) = 18 \) - \( f(19) = 19 \) - \( f(20) = 20 \) ### Step 3: Calculate the sum \( \sum_{r=1}^{20} f(r) \) Since we found that \( f(r) = r \) for \( r = 1, 2, \ldots, 20 \): \[ \sum_{r=1}^{20} f(r) = 1 + 2 + 3 + \ldots + 20 \] Using the formula for the sum of the first \( n \) natural numbers: \[ \sum_{k=1}^{n} k = \frac{n(n + 1)}{2} \] For \( n = 20 \): \[ \sum_{r=1}^{20} r = \frac{20(20 + 1)}{2} = \frac{20 \times 21}{2} = 210 \] ### Step 4: Calculate \( \frac{1}{30} \sum_{r=1}^{20} f(r) \) Now we compute: \[ \frac{1}{30} \sum_{r=1}^{20} f(r) = \frac{1}{30} \times 210 = 7 \] ### Final Answer: \[ \frac{1}{30} \sum_{r=1}^{20} f(r) = 7 \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|6 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos

Similar Questions

Explore conceptually related problems

f(1)=1, n ge 1 f(n+1)=2f(n)+1 then f(n)=

If f(n)=sum_(r=1)^(n) r^(4) , then the value of sum_(r=1)^(n) r(n-r)^(3) is equal to

Let f be a function from the set of positive integers to the set of real number such that f(1)=1 and sum_(r=1)^(n)rf(r)=n(n+1)f(n), forall n ge 2 the value of 2126 f(1063) is ………….. .

If f(x)=(a^x)/(a^x+sqrt(a ,)),(a >0), then find the value of sum_(r=1)^(2n1)2f(r/(2n))

Consider the function f defined on the set of all non-negative interger such that f(0) = 1, f(1) =0 and f(n) + f(n-1) = nf(n-1)+(n-1) f(n-2) for n ge 2 , then f(5) is equal to

Let f : R rarr R be a differentiable function at x = 0 satisfying f(0) = 0 and f'(0) = 1, then the value of lim_(x to 0) (1)/(x) . sum_(n=1)^(oo)(-1)^(n).f((x)/(n)) , is

If f(n) = [(1)/(3)+(n)/(100)] , where [.] denotes G.I.F then sum_(n=1)^(200)f(n) is equal to

If f:RtoR satisfies f(x+y)=f(x)+f(y) for all x,y in R and f(1)=7, then sum_(r=1)^(n) f(r) , is

For x in R , x ne0, 1, let f_(0)(x)=(1)/(1-x) and f_(n+1)(x)=f_(0)(f_(n)(x)),n=0,1,2….. Then the value of f_(100)(3)+f_(1)((2)/(3))+f_(2)((3)/(2)) is equal to

lf f: R rarr R satisfies, f(x + y) = f(x) + f(y), AA x, y in R and f(1) = 4, then sum_(r=1)^n f(r) is