Home
Class 12
MATHS
x=sqrt(1+2sqrt(1+3sqrt(1+4sqrt(1+......

`x=sqrt(1+2sqrt(1+3sqrt(1+4sqrt(1+...`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( x = \sqrt{1 + 2\sqrt{1 + 3\sqrt{1 + 4\sqrt{1 + \ldots}}}} \), we will analyze the structure of the infinite nested radical. ### Step-by-step Solution: 1. **Assume the Value of \( x \)**: We start by assuming that \( x \) is equal to the entire expression: \[ x = \sqrt{1 + 2\sqrt{1 + 3\sqrt{1 + 4\sqrt{1 + \ldots}}}} \] 2. **Square Both Sides**: To eliminate the outer square root, we square both sides: \[ x^2 = 1 + 2\sqrt{1 + 3\sqrt{1 + 4\sqrt{1 + \ldots}}} \] 3. **Isolate the Nested Radical**: Rearranging gives us: \[ x^2 - 1 = 2\sqrt{1 + 3\sqrt{1 + 4\sqrt{1 + \ldots}}} \] 4. **Divide by 2**: Next, we divide both sides by 2: \[ \frac{x^2 - 1}{2} = \sqrt{1 + 3\sqrt{1 + 4\sqrt{1 + \ldots}}} \] 5. **Square Again**: We square both sides again to eliminate the square root: \[ \left(\frac{x^2 - 1}{2}\right)^2 = 1 + 3\sqrt{1 + 4\sqrt{1 + \ldots}} \] 6. **Expand the Left Side**: Expanding the left side gives: \[ \frac{(x^2 - 1)^2}{4} = 1 + 3\sqrt{1 + 4\sqrt{1 + \ldots}} \] 7. **Isolate the Next Nested Radical**: Rearranging gives us: \[ \frac{(x^2 - 1)^2}{4} - 1 = 3\sqrt{1 + 4\sqrt{1 + \ldots}} \] 8. **Divide by 3**: Dividing both sides by 3 gives: \[ \frac{(x^2 - 1)^2 - 4}{12} = \sqrt{1 + 4\sqrt{1 + \ldots}} \] 9. **Continue This Process**: This process can be repeated, but instead, we can recognize that this series converges to a specific value. Through historical mathematical insights, particularly from Ramanujan, we find that this infinite series converges to 3. 10. **Final Conclusion**: Therefore, the value of \( x \) is: \[ x = 3 \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|6 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos

Similar Questions

Explore conceptually related problems

The value of 6+ log_(3//2) (1/(3sqrt2)sqrt(4-1/(3sqrt2)sqrt(4-1/(3sqrt2)sqrt(4-1/(3sqrt2)...)))) is ________.

The value of log_((9)/(4))((1)/(2sqrt(3))sqrt(6-(1)/(2sqrt(3))sqrt(6-(1)/(2sqrt(3))sqrt(6-(1)/(2sqrt(3)))))...oo) is

Let S=(sqrt(1))/(1+sqrt1+sqrt(2))+sqrt(2)/(1+sqrt(2)+sqrt(3))+(sqrt(3))/(1+sqrt(3)+sqrt(4))+...+(sqrt(n))/(1+sqrt(n)+(sqrtn+1))=10 Then find the value of n.

(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2))-(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2))+(1)/(sqrt(2)+1)-(1)/(sqrt(2)-1)

Prove that: 1/(1+sqrt(2))+1/(sqrt(2)+sqrt(3))+1/(sqrt(3)+\ sqrt(4))+1/(sqrt(4)+sqrt(5))+1/(sqrt(5)+sqrt(6))+1/(sqrt(6)+sqrt(7))+\ 1/(sqrt(7)+sqrt(8))+1/(sqrt(8)+sqrt(9))=2

Prove that, cot 7 1/2 ^@ or tan 82 1/2 ^@ = (sqrt(3)+sqrt(2))(sqrt(2)+1) or sqrt(2)+sqrt(3)+sqrt(4)+sqrt(6)

Length of E F is equal to- a. 1+sqrt(3)-sqrt(6) b. \ 1+sqrt(3)-sqrt(2) c. \ sqrt(6)-1-sqrt(3) d. sqrt(2)-1+sqrt(3)

Simplify P=1/(2sqrt(1)+sqrt(2))+1/(3sqrt(2)+2sqrt(3))+....+1/(100sqrt99+99sqrt100

Prove that: tan^(-1){(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))}=pi/4-1/2. cos^(-1)x , 0

Solve the equation sqrt(2x-1)+sqrt(3x-2)=sqrt(4x-3)+sqrt(5x-4).