Home
Class 12
MATHS
Let f:NrarrN be a function such x-f(x)=1...

Let `f:NrarrN` be a function such `x-f(x)=19[(x)/(19)]-90[(f(x))/(90)],AAx in N` , where [.] denotes the greatest integer function and [.] denotes the greatest integers function and `1900ltf(1990)lt2000`, then possible value of `f(1990)` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given function and the constraints provided. Let's break down the solution step by step. ### Step 1: Understand the given function We are given the equation: \[ x - f(x) = 19\left[\frac{x}{19}\right] - 90\left[\frac{f(x)}{90}\right] \] where \([.]\) denotes the greatest integer function. We need to find \(f(1990)\) under the condition \(1900 < f(1990) < 2000\). ### Step 2: Analyze the range of \(f(1990)\) Since \(f(1990)\) must be a natural number between 1900 and 2000, we can express this as: \[ 1900 < f(1990) < 2000 \] ### Step 3: Divide the range by 90 To use the greatest integer function effectively, we divide the bounds by 90: \[ \frac{1900}{90} < \frac{f(1990)}{90} < \frac{2000}{90} \] Calculating these values: \[ \frac{1900}{90} \approx 21.11 \quad \text{and} \quad \frac{2000}{90} \approx 22.22 \] This gives us: \[ 21.11 < \frac{f(1990)}{90} < 22.22 \] Thus, \(\frac{f(1990)}{90}\) can either be 21 or 22 (as they are the only integers in this range). ### Step 4: Case 1 - \(f(1990) = 21 \times 90\) If \(\frac{f(1990)}{90} = 21\): \[ f(1990) = 21 \times 90 = 1890 \] However, this value does not satisfy \(f(1990) > 1900\). ### Step 5: Case 2 - \(f(1990) = 22 \times 90\) If \(\frac{f(1990)}{90} = 22\): \[ f(1990) = 22 \times 90 = 1980 \] This value satisfies \(f(1990) < 2000\) and \(f(1990) > 1900\). ### Step 6: Check for other possible values Since we have established that \(f(1990)\) could also be 21 or 22, we can check: - If \(f(1990) = 21 \times 90 + k\) for \(k = 0, 1, \ldots, 89\), we find that \(f(1990)\) must still be less than 2000. - If \(f(1990) = 22 \times 90 + k\) for \(k = 0, 1, \ldots, 89\), we find that \(f(1990)\) must still be less than 2000. ### Conclusion The only valid solution for \(f(1990)\) that satisfies all conditions is: \[ f(1990) = 1980 \] ### Final Answer Thus, the possible value of \(f(1990)\) is: \[ \boxed{1980} \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|6 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos

Similar Questions

Explore conceptually related problems

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

If f(x)=([x])/(|x|), x ne 0 , where [.] denotes the greatest integer function, then f'(1) is

If f(x)=([x])/(|x|),x ne 0 where [.] denotes the greatest integer function, then f'(1) is

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer function. Then the

Let f(x)=[|x|] where [.] denotes the greatest integer function, then f'(-1) is

If f(x) = log_([x-1])(|x|)/(x) ,where [.] denotes the greatest integer function,then

f(x)=log(x-[x]) , where [*] denotes the greatest integer function. find the domain of f(x).

If f(x)=[sin^(2) x] ([.] denotes the greatest integer function), then

Given lim_(x to 0)(f(x))/(x^(2))=2 , where [.] denotes the greatest integer function, then