Home
Class 12
MATHS
f(x)=sin|x|+sin^(-1)(tanx)+sin(sin^(-1)x...

`f(x)=sin|x|+sin^(-1)(tanx)+sin(sin^(-1)x)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(x) = \sin |x| + \sin^{-1}(\tan x) + \sin(\sin^{-1} x) \), we will analyze each component of the function separately. ### Step 1: Determine the domain of \( f_1(x) = \sin |x| \) The sine function is defined for all real numbers. Therefore, since \( |x| \) is also defined for all \( x \), we conclude that: \[ \text{Domain of } f_1(x) = \mathbb{R} \quad \text{(all real numbers)} \] **Hint:** The sine function is continuous and defined for all real values. ### Step 2: Determine the domain of \( f_2(x) = \sin^{-1}(\tan x) \) The function \( \sin^{-1}(a) \) is defined only when \( a \) is in the interval \([-1, 1]\). Thus, we need to find when: \[ -1 \leq \tan x \leq 1 \] The tangent function is periodic with a period of \( \pi \). The values of \( x \) for which \( \tan x = -1 \) and \( \tan x = 1 \) occur at: - \( \tan x = -1 \) at \( x = n\pi - \frac{\pi}{4} \) for integers \( n \) - \( \tan x = 1 \) at \( x = n\pi + \frac{\pi}{4} \) for integers \( n \) Thus, the intervals where \( \tan x \) lies between -1 and 1 are: \[ x \in \left( n\pi - \frac{\pi}{4}, n\pi + \frac{\pi}{4} \right) \quad \text{for all integers } n \] **Hint:** Look for the intervals where the tangent function is bounded between -1 and 1. ### Step 3: Determine the domain of \( f_3(x) = \sin(\sin^{-1} x) \) The function \( \sin^{-1}(x) \) is defined for \( x \) in the interval \([-1, 1]\). Therefore, the domain of \( f_3(x) \) is: \[ -1 \leq x \leq 1 \] **Hint:** The inverse sine function has a limited range; remember its domain constraints. ### Step 4: Combine the domains To find the overall domain of \( f(x) \), we need to take the intersection of the domains of \( f_1(x) \), \( f_2(x) \), and \( f_3(x) \): 1. Domain of \( f_1(x) \): \( \mathbb{R} \) 2. Domain of \( f_2(x) \): \( \bigcup_{n \in \mathbb{Z}} \left( n\pi - \frac{\pi}{4}, n\pi + \frac{\pi}{4} \right) \) 3. Domain of \( f_3(x) \): \( [-1, 1] \) The intersection of these domains will be the values of \( x \) that satisfy all three conditions. ### Step 5: Identify the valid intervals The only intervals from \( f_2(x) \) that fall within \( [-1, 1] \) are: - For \( n = 0 \): \( \left( -\frac{\pi}{4}, \frac{\pi}{4} \right) \) - For \( n = 1 \): \( \left( \pi - \frac{\pi}{4}, \pi + \frac{\pi}{4} \right) \) which is outside of \([-1, 1]\) - For \( n = -1 \): \( \left( -\pi - \frac{\pi}{4}, -\pi + \frac{\pi}{4} \right) \) which is also outside of \([-1, 1]\) Thus, the only valid interval is: \[ \text{Domain of } f(x) = \left[-\frac{\pi}{4}, \frac{\pi}{4}\right] \] **Final Answer:** The domain of the function \( f(x) \) is \( \left[-\frac{\pi}{4}, \frac{\pi}{4}\right] \). ---
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|16 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|23 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|6 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=sin^(-1)x+|sin^(-1)x|+sin^(-1)|x| If the equation f(x) = k has two solutions, then true set of values of k is

find the maximum value of f(x) = (sin^(-1) (sin x))^(2) - sin^(-1) (sin x)

Find the domain of each of the following functions: f(x)=sin^(-1)sqrt(x^2-1) (ii) f(x)=sin^(-1)x+sin^(-1)2x

Solve the following equations: sin^(-1)((3x)/5)+sin^(-1)((4x)/5)=sin^(-1)x sin^(-1)6x+sin^(-1)6sqrt(3)x=pi/2

If f(x)=sin^(-1)(cosec(sin^(-1)x))+cos^(-1)(sec(cos^(-1)x)) , then f(x) takes

If x in (0,1) and f(x)=sec{tan^(-1)((sin(cos^(-1)x)+cos(sin^(-1)x))/(cos(cos^(-1)x)+sin(sin^(-1)x)))} , then sum_(r=2)^(10)f(1/r) is _______ .

f(x)=sin^(-1)[e^(x)]+sin^(-1)[e^(-x)] where [.] greatest integer function then

Find the domain of each of the following functions: f(x)=sin^(-1)x^2 (ii) f(x)=sin^(-1)x+sinx

Let a=sin^(-)(sin3)+sin^(-1)(sin4)+sin^(-1)(sin5),f(x)=e^(x^(2)+|x|), domain of f(x) be [a,oo) & range of f(x) be [b,oo) and g(x)=(4cos^(4)x-2cos2x-1/4"cos"4x-x^(7))^(1//7) , domain & range of g(x) is set of real numbers. Which of the following are correct

Evaluate int_(cos(cos ^(-1) alpha))^(sin(sin^(-1)beta))|(cos (cos^(-1)x)/(sin(sin^(-1)x)))|dx