Home
Class 12
MATHS
Find the domain f(x)=(log(2x)3)/(cos^(- ...

Find the domain `f(x)=(log_(2x)3)/(cos^(- 1)(2x-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(x) = \frac{\log_{2x} 3}{\cos^{-1}(2x - 1)} \), we need to analyze the conditions for both the numerator and the denominator separately. ### Step 1: Analyze the numerator \( \log_{2x} 3 \) The logarithmic function \( \log_{a} b \) is defined when: 1. The base \( a > 0 \) and \( a \neq 1 \). 2. The argument \( b > 0 \). For our case, the base is \( 2x \) and the argument is \( 3 \). #### Condition 1: Base \( 2x > 0 \) \[ 2x > 0 \implies x > 0 \] #### Condition 2: Base \( 2x \neq 1 \) \[ 2x \neq 1 \implies x \neq \frac{1}{2} \] So, from the numerator, we have: - \( x > 0 \) - \( x \neq \frac{1}{2} \) ### Step 2: Analyze the denominator \( \cos^{-1}(2x - 1) \) The function \( \cos^{-1}(y) \) is defined for \( -1 \leq y \leq 1 \). Therefore, we need: \[ -1 \leq 2x - 1 \leq 1 \] #### Breaking this down into two inequalities: 1. \( 2x - 1 \geq -1 \) \[ 2x \geq 0 \implies x \geq 0 \] 2. \( 2x - 1 \leq 1 \) \[ 2x \leq 2 \implies x \leq 1 \] So, from the denominator, we have: - \( 0 \leq x \leq 1 \) ### Step 3: Combine the conditions Now we combine the conditions from both the numerator and the denominator: 1. From the numerator: \( x > 0 \) and \( x \neq \frac{1}{2} \) 2. From the denominator: \( 0 \leq x \leq 1 \) Thus, the combined conditions give us: - \( 0 < x \leq 1 \) and \( x \neq \frac{1}{2} \) ### Step 4: Write the domain in interval notation The domain of \( f(x) \) can be expressed in interval notation as: \[ \text{Domain} = (0, \frac{1}{2}) \cup (\frac{1}{2}, 1] \] ### Final Answer: The domain of the function \( f(x) = \frac{\log_{2x} 3}{\cos^{-1}(2x - 1)} \) is: \[ (0, \frac{1}{2}) \cup (\frac{1}{2}, 1] \] ---
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|16 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|23 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|6 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos

Similar Questions

Explore conceptually related problems

Find the domain of cos^(-1)(2x-1)

Find the domain f(x)=log_(100x)((2 log_(10) x+1)/-x)

Find the domain of f(x)=2cos^(-1)2x+sin^(-1)x .

Find the domain f(x)=sqrt((log_(0.3)|x-2|)/(|x|)) .

Find the domain of f(x)=(log)_(10)(log)_2(log)_(2/pi)(t a n^(-1)x)^(-1)

Find the number of integers in the domain of f (x) = (1)/(sqrt(ln cos ^(-1)x)

Find domain of f(x)=log_(10)(1+x^(3)) .

Find the domain of the function f(x)=sin^(-1)(2x-3)

Find the domain of the function f(x)=sin^(-1)(2x-3) .

Find the domain of f(x) = log (e^(x) - x) + (1)/(sqrt(5[x] - [x]^(2) - 6))