Home
Class 12
MATHS
f(x)=sin^(-1)((2-3[x])/4), which [*] den...

`f(x)=sin^(-1)((2-3[x])/4)`, which `[*]` denotes the greatest integer function.

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(x) = \sin^{-1}\left(\frac{2 - 3[x]}{4}\right) \), where \([x]\) denotes the greatest integer function, we need to ensure that the argument of the inverse sine function lies within the valid range of \([-1, 1]\). ### Step-by-Step Solution: 1. **Set up the inequality for the inverse sine function:** \[ -1 \leq \frac{2 - 3[x]}{4} \leq 1 \] 2. **Multiply all parts of the inequality by 4:** \[ -4 \leq 2 - 3[x] \leq 4 \] 3. **Rearranging the left side of the inequality:** \[ -4 - 2 \leq -3[x] \implies -6 \leq -3[x] \] Dividing by -3 (and reversing the inequality): \[ 2 \geq [x] \] This gives us: \[ [x] \leq 2 \] 4. **Rearranging the right side of the inequality:** \[ 2 - 3[x] \leq 4 \implies -3[x] \leq 2 \implies [x] \geq -\frac{2}{3} \] Since \([x]\) is an integer, this means: \[ [x] \geq 0 \] 5. **Combining the results from both inequalities:** We have: \[ 0 \leq [x] \leq 2 \] This means \([x]\) can take values \(0, 1, 2\). 6. **Finding the corresponding values of \(x\):** - If \([x] = 0\), then \(0 \leq x < 1\). - If \([x] = 1\), then \(1 \leq x < 2\). - If \([x] = 2\), then \(2 \leq x < 3\). 7. **Combining these intervals:** The combined interval for \(x\) is: \[ 0 \leq x < 3 \] ### Final Domain: Thus, the domain of the function \( f(x) \) is: \[ \text{Domain of } f(x) = [0, 3) \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|23 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|10 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos

Similar Questions

Explore conceptually related problems

The domain of definition of f(x)=sin^(- 1)[2-4x^2] is ([.] denotes the greatest integer function).

Domain (D) and range (R) of f(x)=sin^(-1)(cos^(-1)[x]), where [.] denotes the greatest integer function, is

The domain of the function f(x)=(1)/(sqrt((x)-[x])) where [*] denotes the greatest integer function is

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

Which of the following function is/are periodic? (a)f(x)={1,x is rational 0,x is irrational (b)f(x)={x-[x];2n

If f(x) =[ sin ^(-1)(sin 2x )] (where, [] denotes the greatest integer function ), then

If f(x)=[x] sin ((pi)/([x+1])) , where [.] denotes the greatest integer function, then the set of point of discontiuity of f in its domain is

Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer function. Then the

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then