Home
Class 12
MATHS
f(x)=1/sqrt([x]^(2)-[x]-6), where [*] de...

`f(x)=1/sqrt([x]^(2)-[x]-6)`, where `[*]` denotes the greatest integer function.

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(x) = \frac{1}{\sqrt{[\![x]\!]^2 - [\![x]\!] - 6}} \), where \([\![x]\!]\) denotes the greatest integer function, we need to ensure that the expression inside the square root is positive, since the denominator cannot be zero or negative. ### Step 1: Set the condition for the square root We start by setting the condition that the expression inside the square root must be greater than zero: \[ [\![x]\!]^2 - [\![x]\!] - 6 > 0 \] ### Step 2: Substitute the greatest integer function Let \( t = [\![x]\!] \). Then we rewrite the inequality: \[ t^2 - t - 6 > 0 \] ### Step 3: Factor the quadratic expression Next, we factor the quadratic: \[ t^2 - t - 6 = (t - 3)(t + 2) \] Thus, we have: \[ (t - 3)(t + 2) > 0 \] ### Step 4: Determine the critical points The critical points from the factors are \( t = 3 \) and \( t = -2 \). We will analyze the sign of the product in the intervals defined by these points: - \( t < -2 \) - \( -2 < t < 3 \) - \( t > 3 \) ### Step 5: Test the intervals 1. For \( t < -2 \) (e.g., \( t = -3 \)): \[ (-3 - 3)(-3 + 2) = (-6)(-1) = 6 > 0 \quad \text{(positive)} \] 2. For \( -2 < t < 3 \) (e.g., \( t = 0 \)): \[ (0 - 3)(0 + 2) = (-3)(2) = -6 < 0 \quad \text{(negative)} \] 3. For \( t > 3 \) (e.g., \( t = 4 \)): \[ (4 - 3)(4 + 2) = (1)(6) = 6 > 0 \quad \text{(positive)} \] ### Step 6: Combine the intervals The solution to the inequality \( (t - 3)(t + 2) > 0 \) is: \[ t < -2 \quad \text{or} \quad t > 3 \] Thus, we can express this in interval notation as: \[ (-\infty, -2) \cup (3, \infty) \] ### Step 7: Translate back to \( x \) Since \( t = [\![x]\!] \), we need to find the corresponding \( x \) values: - For \( t < -2 \): The greatest integer function outputs integers less than or equal to -3, which corresponds to \( x < -2 \). - For \( t > 3 \): The greatest integer function outputs integers greater than or equal to 4, which corresponds to \( x \geq 4 \). ### Final Domain Thus, the domain of \( f(x) \) is: \[ (-\infty, -2) \cup [4, \infty) \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|23 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|10 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos

Similar Questions

Explore conceptually related problems

The domain of the function f(x)=1/(sqrt([x]^2-2[x]-8)) is, where [*] denotes greatest integer function

The domain of the function f(x)=(1)/(sqrt((x)-[x])) where [*] denotes the greatest integer function is

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

Draw the graph of f(x) = [x^(2)], x in [0, 2) , where [*] denotes the greatest integer function.

Let f(x)=sqrt([sin 2x] -[cos 2x]) (where I I denotes the greatest integer function) then the range of f(x) will be

The function f(x)=[x]^(2)+[-x^(2)] , where [.] denotes the greatest integer function, is

f(x)=1/([abs(x-2}]+[abs(x-10)]-8) where [*] denotes the greatest integer function.

Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer function. Then the

If f(x) = [x^(-2) [x^(2)]] , (where [*] denotes the greatest integer function) x ne 0 , then incorrect statement