Home
Class 12
MATHS
f(x)= cosec^(-1)[1+sin^(2)x], where [*] ...

`f(x)= cosec^(-1)[1+sin^(2)x]`, where `[*]` denotes the greatest integer function.

Text Solution

Verified by Experts

The correct Answer is:
`x in R`
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|23 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|10 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos

Similar Questions

Explore conceptually related problems

Let f (x) = cosec^-1[1 + sin^2x], where [*] denotes the greatest integer function, then the range of f

Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer function. Then the

The range of the function f(x)=cosec^(-1)[sinx] " in " [0,2pi] , where [*] denotes the greatest integer function , is

If f(x) =[ sin ^(-1)(sin 2x )] (where, [] denotes the greatest integer function ), then

Domain (D) and range (R) of f(x)=sin^(-1)(cos^(-1)[x]), where [.] denotes the greatest integer function, is

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

If [sin^-1 (cos^-1(sin^-1 (tan^-1 x)))]=1 , where [*] denotes the greatest integer function, then x in

If f(x)=[sin^(2) x] ([.] denotes the greatest integer function), then

Which of the following function is/are periodic? (a)f(x)={1,x is rational 0,x is irrational (b)f(x)={x-[x];2n

f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.