Home
Class 12
MATHS
f(x)=cos^(-1)sqrt(log([x])""abs(x)/x), w...

`f(x)=cos^(-1)sqrt(log_([x])""abs(x)/x)`, where `[*]` denotes the greatest integer.

Text Solution

Verified by Experts

The correct Answer is:
`x in (2,infty)`
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|23 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|10 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos

Similar Questions

Explore conceptually related problems

f(x)=cos^-1sqrt(log_([x]) ((|x|)/x)) where [.] denotes the greatest integer function

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

Find the domain and range of the following function: f(x)=sqrt(log_(1//2)log_(2)[x^(2)+4x+5]) where [.] denotes the greatest integer function

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

If f(x) = log_([x-1])(|x|)/(x) ,where [.] denotes the greatest integer function,then

f(x)=1/([abs(x-2}]+[abs(x-10)]-8) where [*] denotes the greatest integer function.

The domain of the function f(x)=(1)/(sqrt((x)-[x])) where [*] denotes the greatest integer function is

Find the domain and range of f(x) = sin^-1 (log [x]) + log (sin^-1 [x]) , where [.] denotes the greatest integer function.

The domain of function f (x) = log _([x+(1)/(2)])(2x ^(2) + x-1), where [.] denotes the greatest integer function is :

Domain (D) and range (R) of f(x)=sin^(-1)(cos^(-1)[x]), where [.] denotes the greatest integer function, is