Home
Class 12
MATHS
f(x)=1/([abs(x-2}]+[abs(x-10)]-8) where ...

`f(x)=1/([abs(x-2}]+[abs(x-10)]-8)` where `[*]` denotes the greatest integer function.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) = \frac{1}{[\lvert x-2 \rvert] + [\lvert x-10 \rvert] - 8} \), where \([\cdot]\) denotes the greatest integer function (also known as the floor function). ### Step 1: Understand the components of the function The function consists of two absolute value expressions: \(\lvert x-2 \rvert\) and \(\lvert x-10 \rvert\). The greatest integer function will take the values of these absolute expressions and round them down to the nearest integer. ### Step 2: Determine the intervals for the greatest integer function The expressions \(\lvert x-2 \rvert\) and \(\lvert x-10 \rvert\) change their values at \(x = 2\) and \(x = 10\). Therefore, we will analyze the function in the following intervals: 1. \( (-\infty, 2) \) 2. \( [2, 10) \) 3. \( [10, \infty) \) ### Step 3: Analyze each interval #### Interval 1: \( x < 2 \) - Here, \(\lvert x-2 \rvert = 2 - x\) and \(\lvert x-10 \rvert = 10 - x\). - Thus, \([\lvert x-2 \rvert] = [2 - x]\) and \([\lvert x-10 \rvert] = [10 - x]\). - The sum becomes \([\lvert x-2 \rvert] + [\lvert x-10 \rvert] = [2 - x] + [10 - x]\). - For \(x < 2\), both \(2 - x\) and \(10 - x\) are positive, and we can find specific values for \(x\) to evaluate the floor functions. #### Interval 2: \( 2 \leq x < 10 \) - Here, \(\lvert x-2 \rvert = x - 2\) and \(\lvert x-10 \rvert = 10 - x\). - Thus, \([\lvert x-2 \rvert] = [x - 2]\) and \([\lvert x-10 \rvert] = [10 - x]\). - The sum becomes \([\lvert x-2 \rvert] + [\lvert x-10 \rvert] = [x - 2] + [10 - x]\). - We will analyze specific values in this interval. #### Interval 3: \( x \geq 10 \) - Here, \(\lvert x-2 \rvert = x - 2\) and \(\lvert x-10 \rvert = x - 10\). - Thus, \([\lvert x-2 \rvert] = [x - 2]\) and \([\lvert x-10 \rvert] = [x - 10]\). - The sum becomes \([\lvert x-2 \rvert] + [\lvert x-10 \rvert] = [x - 2] + [x - 10]\). - Again, we will analyze specific values in this interval. ### Step 4: Find the domain of \( f(x) \) We need to find when the denominator \([\lvert x-2 \rvert] + [\lvert x-10 \rvert] - 8\) is not equal to zero. This means we need to find values of \(x\) such that: \[ [\lvert x-2 \rvert] + [\lvert x-10 \rvert] \neq 8 \] ### Step 5: Identify the points where the function is undefined By evaluating the intervals and checking where the sum equals 8, we can find the points where \(f(x)\) is undefined. ### Final Step: Write the domain After analyzing the intervals and finding the points where the function is undefined, we can conclude the domain of \(f(x)\).
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|23 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|10 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos

Similar Questions

Explore conceptually related problems

Find the domain of function f(x)=(1)/(abs(x-1)+abs(7-x)-6) where [*] denotes the greatest integral function .

Find the range of f(x)=[abs(sinx)+abs(cosx)] , where [*] denotes the greatest integer function.

The domain of the function f(x)=1/(sqrt([x]^2-2[x]-8)) is, where [*] denotes greatest integer function

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

The domain of the function f(x)=(1)/(sqrt((x)-[x])) where [*] denotes the greatest integer function is

f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

f(x)=cos^-1sqrt(log_([x]) ((|x|)/x)) where [.] denotes the greatest integer function

The function f(x) = [x] cos((2x-1)/2) pi where [ ] denotes the greatest integer function, is discontinuous

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.