Home
Class 12
MATHS
f(x)=abs(x-1)+abs(x-2), -1 le x le 3. Fi...

`f(x)=abs(x-1)+abs(x-2), -1 le x le 3`. Find the range of f(x).

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = |x - 1| + |x - 2| \) for \( -1 \leq x \leq 3 \), we will analyze the function by breaking it down into intervals based on the critical points where the expressions inside the absolute values change sign. ### Step 1: Identify critical points The critical points occur where the expressions inside the absolute values are zero: - \( x - 1 = 0 \) gives \( x = 1 \) - \( x - 2 = 0 \) gives \( x = 2 \) Thus, we will consider the intervals: 1. \( -1 \leq x < 1 \) 2. \( 1 \leq x < 2 \) 3. \( 2 \leq x \leq 3 \) ### Step 2: Evaluate \( f(x) \) in each interval #### Interval 1: \( -1 \leq x < 1 \) In this interval, both \( x - 1 \) and \( x - 2 \) are negative: \[ f(x) = -(x - 1) - (x - 2) = -x + 1 - x + 2 = -2x + 3 \] #### Interval 2: \( 1 \leq x < 2 \) Here, \( x - 1 \) is non-negative and \( x - 2 \) is negative: \[ f(x) = (x - 1) - (x - 2) = x - 1 - x + 2 = 1 \] #### Interval 3: \( 2 \leq x \leq 3 \) In this interval, both \( x - 1 \) and \( x - 2 \) are non-negative: \[ f(x) = (x - 1) + (x - 2) = x - 1 + x - 2 = 2x - 3 \] ### Step 3: Determine the values at the boundaries and critical points Now we will evaluate \( f(x) \) at the boundaries and critical points: - At \( x = -1 \): \[ f(-1) = -2(-1) + 3 = 2 + 3 = 5 \] - At \( x = 1 \): \[ f(1) = 1 \] - At \( x = 2 \): \[ f(2) = 1 \] - At \( x = 3 \): \[ f(3) = 2(3) - 3 = 6 - 3 = 3 \] ### Step 4: Collect all values From the evaluations: - In the interval \( -1 \leq x < 1 \), \( f(x) \) varies from \( 5 \) to \( 1 \). - In the interval \( 1 \leq x < 2 \), \( f(x) = 1 \). - In the interval \( 2 \leq x \leq 3 \), \( f(x) \) varies from \( 1 \) to \( 3 \). ### Step 5: Determine the range Combining all the values, the minimum value of \( f(x) \) is \( 1 \) and the maximum value is \( 5 \). Thus, the range of \( f(x) \) is: \[ \text{Range of } f(x) = [1, 5] \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 7|5 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|16 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos

Similar Questions

Explore conceptually related problems

f(x)=abs(x-1)+abs(x-2)+abs(x-3) . Find the range of f(x).

f(x)=sqrt(2-abs(x))+sqrt(1+abs(x)) . Find the domain of f(x).

Draw the graph of the function f(x)= x- |x-x^(2)|, -1 le x le 1 and find the points of non-differentiability.

Two functions are defined as under : f(x)={(x+1, x le 1), (2x+1, 1 < x le 2):} and g(x)={(x^2, -1 le x le 2), (x+2, 2 le x le 3):} Find fog and gof

Let f(x) = x(2-x), 0 le x le 2 . If the definition of f(x) is extended over the set R-[0,2] by f (x+1)= f(x) , then f is a

Let f(x)=2x(2-x), 0 le x le 2 . Then find the number of solutions of f(f(f(x)))= (x)/(2) .

If 02 le x le 2 , the maximum value of f(x)=1-x^(2) is

For abs(x-1)+abs(x-2)+abs(x-3)le6 , x belongs to

Draw the graph of the function f(x) = x - |x - x^(2)|, -1 le x le 1 and discuss the continuity or discontinuity of f in the interval -1 le x le 1

Let f(x)=(x^(2)+2)/([x]),1 le x le3 , where [.] is the greatest integer function. Then the least value of f(x) is

ARIHANT MATHS ENGLISH-FUNCTIONS-Exercise For Session 5
  1. f(x)=x/(1+x^(2)). Find domain and range of f(x).

    Text Solution

    |

  2. f(x)=sinx+cosx+3. find the range of f(x).

    Text Solution

    |

  3. f(x)=abs(x-1)+abs(x-2), -1 le x le 3. Find the range of f(x).

    Text Solution

    |

  4. f(x)=log(3)(5+4x-x^(2)). find the range of f(x).

    Text Solution

    |

  5. f(x)=(x^(2)+2x+3)/x . Find the range of f(x).

    Text Solution

    |

  6. f(x)=abs(x-1)+abs(x-2)+abs(x-3) . Find the range of f(x).

    Text Solution

    |

  7. f(x)=cos^-1sqrt(log([x]) ((|x|)/x)) where [.] denotes the greatest int...

    Text Solution

    |

  8. Let f(x)=sqrt([sin 2x] -[cos 2x]) (where I I denotes the greatest inte...

    Text Solution

    |

  9. The range of sin^(-1)[x^2+1/2]+cos^(-1)[x^2-1/2] , where [.] denotes t...

    Text Solution

    |

  10. Range of f(x) =sin^-1(sqrt(x^2+x+1)) is

    Text Solution

    |

  11. f(x)=cos^(-1)(x^(2)/sqrt(1+x^(2)))

    Text Solution

    |

  12. Find the range of f(x)=sqrt(log(cos(sinx)))

    Text Solution

    |

  13. f(x)=(x-1)/(x^(2)-2x+3) Find the range of f(x).

    Text Solution

    |

  14. if:f(x)=(sinx)/(sqrt(1+tan^2x))-(cosx)/(sqrt(1+cot^2x)), then find the...

    Text Solution

    |

  15. Range of f(x)=(tan(pi[x^(2)-x]))/(1+sin(cosx))

    Text Solution

    |

  16. f(x)=e^(x)/([x+1]),x ge 0

    Text Solution

    |

  17. Find the range of f(x)=[abs(sinx)+abs(cosx)], where [*] denotes the gr...

    Text Solution

    |

  18. f(x)=sqrt(-x^(2)+4x-3)+sqrt(sin""pi/2(sin""pi/2(x-1)))

    Text Solution

    |

  19. Find the image of the following sets under the mapping f(x)= x^4 -8x^3...

    Text Solution

    |

  20. Find the domain and range of f(x)=log[ cos|x|+1/2],where [.] denotes...

    Text Solution

    |