Home
Class 12
MATHS
Let f(x)=sqrt([sin 2x] -[cos 2x]) (where...

Let `f(x)=sqrt([sin 2x] -[cos 2x])` (where I I denotes the greatest integer function) then the range of f(x) will be

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = \sqrt{[\sin(2x)] - [\cos(2x)]} \), where \([\cdot]\) denotes the greatest integer function (also known as the floor function), we will analyze the behavior of \(\sin(2x)\) and \(\cos(2x)\) over their respective intervals. ### Step-by-step Solution: 1. **Understanding the Functions**: - The sine function, \(\sin(2x)\), oscillates between -1 and 1. - The cosine function, \(\cos(2x)\), also oscillates between -1 and 1. - Therefore, both \([\sin(2x)]\) and \([\cos(2x)]\) can take values from -1 to 1. 2. **Finding the Values of the Greatest Integer Function**: - The greatest integer function \([\sin(2x)]\) can take the values: - -1 when \(-1 \leq \sin(2x) < 0\) - 0 when \(0 \leq \sin(2x) < 1\) - 1 when \(\sin(2x) = 1\) - The greatest integer function \([\cos(2x)]\) can take the values: - -1 when \(-1 \leq \cos(2x) < 0\) - 0 when \(0 \leq \cos(2x) < 1\) - 1 when \(\cos(2x) = 1\) 3. **Evaluating \(f(x)\)**: - The function \(f(x) = \sqrt{[\sin(2x)] - [\cos(2x)]}\) will be defined only when \([\sin(2x)] - [\cos(2x)] \geq 0\). - We will evaluate the possible combinations of \([\sin(2x)]\) and \([\cos(2x)]\): - If \([\sin(2x)] = 0\) and \([\cos(2x)] = 1\): \(f(x) = \sqrt{0 - 1} \) (not defined) - If \([\sin(2x)] = 1\) and \([\cos(2x)] = 0\): \(f(x) = \sqrt{1 - 0} = 1\) - If \([\sin(2x)] = 0\) and \([\cos(2x)] = 0\): \(f(x) = \sqrt{0 - 0} = 0\) - If \([\sin(2x)] = -1\) and \([\cos(2x)] = 0\): \(f(x) = \sqrt{-1 - 0} \) (not defined) - If \([\sin(2x)] = 0\) and \([\cos(2x)] = -1\): \(f(x) = \sqrt{0 - (-1)} = \sqrt{1} = 1\) - If \([\sin(2x)] = -1\) and \([\cos(2x)] = -1\): \(f(x) = \sqrt{-1 - (-1)} = \sqrt{0} = 0\) 4. **Identifying the Range**: - From the evaluations above, we find that \(f(x)\) can take the values: - 0 (from the cases where both \([\sin(2x)]\) and \([\cos(2x)]\) are 0 or both are -1) - 1 (from the cases where \([\sin(2x)] = 1\) and \([\cos(2x)] = 0, or vice versa) - Therefore, the range of \(f(x)\) is \(\{0, 1\}\). ### Conclusion: The range of the function \( f(x) = \sqrt{[\sin(2x)] - [\cos(2x)]} \) is \(\{0, 1\}\).
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 7|5 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|16 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos

Similar Questions

Explore conceptually related problems

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

If f(x) =[ sin ^(-1)(sin 2x )] (where, [] denotes the greatest integer function ), then

Let f (x) = cosec^-1[1 + sin^2x], where [*] denotes the greatest integer function, then the range of f

Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer function. Then the

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

If f(x)=e^(sin(x-[x])cospix) , where [x] denotes the greatest integer function, then f(x) is

If f(x)=[sin^(2) x] ([.] denotes the greatest integer function), then

f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

f(x)=cos^-1sqrt(log_([x]) ((|x|)/x)) where [.] denotes the greatest integer function

ARIHANT MATHS ENGLISH-FUNCTIONS-Exercise For Session 5
  1. f(x)=abs(x-1)+abs(x-2), -1 le x le 3. Find the range of f(x).

    Text Solution

    |

  2. f(x)=log(3)(5+4x-x^(2)). find the range of f(x).

    Text Solution

    |

  3. f(x)=(x^(2)+2x+3)/x . Find the range of f(x).

    Text Solution

    |

  4. f(x)=abs(x-1)+abs(x-2)+abs(x-3) . Find the range of f(x).

    Text Solution

    |

  5. f(x)=cos^-1sqrt(log([x]) ((|x|)/x)) where [.] denotes the greatest int...

    Text Solution

    |

  6. Let f(x)=sqrt([sin 2x] -[cos 2x]) (where I I denotes the greatest inte...

    Text Solution

    |

  7. The range of sin^(-1)[x^2+1/2]+cos^(-1)[x^2-1/2] , where [.] denotes t...

    Text Solution

    |

  8. Range of f(x) =sin^-1(sqrt(x^2+x+1)) is

    Text Solution

    |

  9. f(x)=cos^(-1)(x^(2)/sqrt(1+x^(2)))

    Text Solution

    |

  10. Find the range of f(x)=sqrt(log(cos(sinx)))

    Text Solution

    |

  11. f(x)=(x-1)/(x^(2)-2x+3) Find the range of f(x).

    Text Solution

    |

  12. if:f(x)=(sinx)/(sqrt(1+tan^2x))-(cosx)/(sqrt(1+cot^2x)), then find the...

    Text Solution

    |

  13. Range of f(x)=(tan(pi[x^(2)-x]))/(1+sin(cosx))

    Text Solution

    |

  14. f(x)=e^(x)/([x+1]),x ge 0

    Text Solution

    |

  15. Find the range of f(x)=[abs(sinx)+abs(cosx)], where [*] denotes the gr...

    Text Solution

    |

  16. f(x)=sqrt(-x^(2)+4x-3)+sqrt(sin""pi/2(sin""pi/2(x-1)))

    Text Solution

    |

  17. Find the image of the following sets under the mapping f(x)= x^4 -8x^3...

    Text Solution

    |

  18. Find the domain and range of f(x)=log[ cos|x|+1/2],where [.] denotes...

    Text Solution

    |

  19. Find the domain and range of f(x) = sin^-1 (log [x]) + log (sin^-1 [x...

    Text Solution

    |

  20. Find the domain and range of f(x)=[log(sin^(-1)sqrt(x^2+3x+2))].

    Text Solution

    |