Home
Class 12
MATHS
f(x)=cos^(-1)(x^(2)/sqrt(1+x^(2)))...

`f(x)=cos^(-1)(x^(2)/sqrt(1+x^(2)))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = \cos^{-1}\left(\frac{x^2}{\sqrt{1+x^2}}\right) \), we will follow these steps: ### Step 1: Identify the domain of the function inside the cosine inverse The function \( \cos^{-1}(a) \) is defined for \( a \) in the interval \([-1, 1]\). Therefore, we need to ensure that: \[ -1 \leq \frac{x^2}{\sqrt{1+x^2}} \leq 1 \] ### Step 2: Analyze the expression \( \frac{x^2}{\sqrt{1+x^2}} \) Since \( x^2 \) is always non-negative for all real \( x \), we have: \[ \frac{x^2}{\sqrt{1+x^2}} \geq 0 \] This means the left part of the inequality \(-1 \leq \frac{x^2}{\sqrt{1+x^2}}\) is always satisfied. ### Step 3: Determine the upper bound Next, we need to check the upper bound: \[ \frac{x^2}{\sqrt{1+x^2}} \leq 1 \] Squaring both sides (which is valid since both sides are non-negative): \[ \frac{x^4}{1+x^2} \leq 1 \] This simplifies to: \[ x^4 \leq 1 + x^2 \] Rearranging gives: \[ x^4 - x^2 - 1 \leq 0 \] Let \( y = x^2 \). The inequality becomes: \[ y^2 - y - 1 \leq 0 \] ### Step 4: Solve the quadratic inequality To solve \( y^2 - y - 1 = 0 \), we use the quadratic formula: \[ y = \frac{-(-1) \pm \sqrt{(-1)^2 - 4 \cdot 1 \cdot (-1)}}{2 \cdot 1} = \frac{1 \pm \sqrt{5}}{2} \] The roots are: \[ y_1 = \frac{1 + \sqrt{5}}{2}, \quad y_2 = \frac{1 - \sqrt{5}}{2} \] Since \( y \) (which is \( x^2 \)) must be non-negative, we only consider \( y_1 = \frac{1 + \sqrt{5}}{2} \). ### Step 5: Determine the valid range for \( y \) The quadratic \( y^2 - y - 1 \) opens upwards (as the coefficient of \( y^2 \) is positive), and it is negative between its roots: \[ y_2 \leq y \leq y_1 \] Since \( y_2 = \frac{1 - \sqrt{5}}{2} \) is negative, we only consider \( 0 \leq y \leq \frac{1 + \sqrt{5}}{2} \). ### Step 6: Find the range of \( f(x) \) Now we can find the range of \( f(x) \): - When \( y = 0 \) (i.e., \( x = 0 \)), \( f(0) = \cos^{-1}(0) = \frac{\pi}{2} \). - When \( y = \frac{1 + \sqrt{5}}{2} \), we calculate: \[ f(x) = \cos^{-1}\left(1\right) = 0 \] Thus, the range of \( f(x) \) is: \[ f(x) \in [0, \frac{\pi}{2}] \] ### Final Result The range of the function \( f(x) = \cos^{-1}\left(\frac{x^2}{\sqrt{1+x^2}}\right) \) is: \[ [0, \frac{\pi}{2}] \] ---
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 7|5 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|16 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos

Similar Questions

Explore conceptually related problems

Find the domain of the following following functions: (a) f(x)=(sin^(-1))/(x) (b) f(x)=sin^(-1)(|x-1|-2) (c ) f(x)=cos^(-1)(1+3x+2x^(2)) (d ) f(x)=(sin^(-1)(x-3))/(sqrt(9-x^(2))) (e ) f(x)="cos"^(-1)((6-3x)/(4))+"cosec"^(-1)((x-1)/(2)) (f) f(x)=sqrt("sec"^(-1)((2-|x|)/(4)))

f(x)=cos^(-1)(x-x^2)+sqrt(1-1/(|x|))+1/[[x^2-1]) then domain of f(x) is (where [x] is G.I.F.) [sqrt(2),(1+sqrt(5))/2] (2) (-sqrt(2),(1-sqrt(5))/2] (sqrt(2),(1+sqrt(5))/2] (4) (1,2)

Find the value of cos^(-1)(x)+cos^(-1)((x)/(2)+(sqrt(3-3x^(2)))/(2))

If f(x)=cos^(-1)(x^((3)/(2))-sqrt(1-x-x^(2)+x^(3))),AA 0 le x le 1 then the minimum value of f(x) is

If the function f(x)=cos^(-1)(x^((3)/(2))-sqrt(1-x-x^(2)+x^(3))) (" where, "AA 0 lt x lt 1), then the value of |sqrt3f'((1)/(2))| is equal to ("take "sqrt3=1.73)

Find the range of f(x)=cos^(-1)((sqrt(1+2x^2))/(1+x^2))

If x in[-1,(-1)/(sqrt(2))] , then the inverse of the function f(x)=sin^(-1)(2x sqrt(1-x^(2))) is given by

cos^(-1)(sqrt((1+cos x)/2))

If (1)/(sqrt2) lt x lt 1 , then prove that cos^(-1) x + cos^(-1) ((x + sqrt(1 - x^(2)))/(sqrt2)) = (pi)/(4)

Find the range of f(x)=sqrt(cos^(-1)sqrt((1-x^2))-sin^(-1)x)

ARIHANT MATHS ENGLISH-FUNCTIONS-Exercise For Session 5
  1. f(x)=abs(x-1)+abs(x-2), -1 le x le 3. Find the range of f(x).

    Text Solution

    |

  2. f(x)=log(3)(5+4x-x^(2)). find the range of f(x).

    Text Solution

    |

  3. f(x)=(x^(2)+2x+3)/x . Find the range of f(x).

    Text Solution

    |

  4. f(x)=abs(x-1)+abs(x-2)+abs(x-3) . Find the range of f(x).

    Text Solution

    |

  5. f(x)=cos^-1sqrt(log([x]) ((|x|)/x)) where [.] denotes the greatest int...

    Text Solution

    |

  6. Let f(x)=sqrt([sin 2x] -[cos 2x]) (where I I denotes the greatest inte...

    Text Solution

    |

  7. The range of sin^(-1)[x^2+1/2]+cos^(-1)[x^2-1/2] , where [.] denotes t...

    Text Solution

    |

  8. Range of f(x) =sin^-1(sqrt(x^2+x+1)) is

    Text Solution

    |

  9. f(x)=cos^(-1)(x^(2)/sqrt(1+x^(2)))

    Text Solution

    |

  10. Find the range of f(x)=sqrt(log(cos(sinx)))

    Text Solution

    |

  11. f(x)=(x-1)/(x^(2)-2x+3) Find the range of f(x).

    Text Solution

    |

  12. if:f(x)=(sinx)/(sqrt(1+tan^2x))-(cosx)/(sqrt(1+cot^2x)), then find the...

    Text Solution

    |

  13. Range of f(x)=(tan(pi[x^(2)-x]))/(1+sin(cosx))

    Text Solution

    |

  14. f(x)=e^(x)/([x+1]),x ge 0

    Text Solution

    |

  15. Find the range of f(x)=[abs(sinx)+abs(cosx)], where [*] denotes the gr...

    Text Solution

    |

  16. f(x)=sqrt(-x^(2)+4x-3)+sqrt(sin""pi/2(sin""pi/2(x-1)))

    Text Solution

    |

  17. Find the image of the following sets under the mapping f(x)= x^4 -8x^3...

    Text Solution

    |

  18. Find the domain and range of f(x)=log[ cos|x|+1/2],where [.] denotes...

    Text Solution

    |

  19. Find the domain and range of f(x) = sin^-1 (log [x]) + log (sin^-1 [x...

    Text Solution

    |

  20. Find the domain and range of f(x)=[log(sin^(-1)sqrt(x^2+3x+2))].

    Text Solution

    |