Home
Class 12
MATHS
Find the domain and range of f(x)=log[...

Find the domain and range of `f(x)=log[ cos|x|+1/2]`,where [.] denotes the greatest integer function.

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain and range of the function \( f(x) = \log\left[\cos|x| + \frac{1}{2}\right] \), where \([.]\) denotes the greatest integer function, we will proceed step by step. ### Step 1: Determine the condition for the logarithm to be defined The logarithm function is defined only for positive values. Therefore, we need: \[ \cos|x| + \frac{1}{2} > 0 \] This implies: \[ \cos|x| > -\frac{1}{2} \] ### Step 2: Analyze the cosine function The cosine function, \(\cos|x|\), oscillates between -1 and 1. We need to find the values of \(x\) for which \(\cos|x| > -\frac{1}{2}\). ### Step 3: Find the intervals for \(\cos|x| > -\frac{1}{2}\) The cosine function equals \(-\frac{1}{2}\) at specific angles: \[ |x| = \frac{2\pi}{3} + 2k\pi \quad \text{and} \quad |x| = \frac{4\pi}{3} + 2k\pi \quad \text{for } k \in \mathbb{Z} \] This means: - \(\cos|x| = -\frac{1}{2}\) at \(x = \pm \frac{2\pi}{3} + 2k\pi\) and \(x = \pm \frac{4\pi}{3} + 2k\pi\). ### Step 4: Determine the intervals The intervals where \(\cos|x| > -\frac{1}{2}\) can be determined from the unit circle: - Between \(-\frac{2\pi}{3}\) and \(\frac{2\pi}{3}\), and between \(-\frac{4\pi}{3}\) and \(\frac{4\pi}{3}\), and so on. Thus, the general solution for the domain can be expressed as: \[ x \in \left(2n\pi - \frac{2\pi}{3}, 2n\pi + \frac{2\pi}{3}\right) \quad \text{for } n \in \mathbb{Z} \] ### Step 5: Determine the range of the function Next, we need to analyze the range of \(f(x)\): \[ f(x) = \log\left[\cos|x| + \frac{1}{2}\right] \] The maximum value of \(\cos|x|\) is 1, so: \[ \cos|x| + \frac{1}{2} \leq 1 + \frac{1}{2} = \frac{3}{2} \] Thus: \[ \cos|x| + \frac{1}{2} \geq 0 \quad \text{(since we established the domain)} \] The minimum value occurs when \(\cos|x| = -\frac{1}{2}\): \[ \cos|x| + \frac{1}{2} \geq 0 \implies \text{minimum value is } 0 \] The greatest integer function \([ \cdot ]\) will yield: \[ 1 \leq \cos|x| + \frac{1}{2} < \frac{3}{2} \implies [\cos|x| + \frac{1}{2}] = 1 \] Thus: \[ f(x) = \log(1) = 0 \] ### Conclusion The domain of \(f(x)\) is: \[ x \in \left(2n\pi - \frac{2\pi}{3}, 2n\pi + \frac{2\pi}{3}\right) \quad \text{for } n \in \mathbb{Z} \] The range of \(f(x)\) is: \[ \{0\} \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 7|5 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|16 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos

Similar Questions

Explore conceptually related problems

Find the domain and range of f(x)="sin"^(-1)(x-[x]), where [.] represents the greatest integer function.

f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

Find the domain of the function f(x)=log_(e)(x-[x]) , where [.] denotes the greatest integer function.

If f(x) = log_([x-1])(|x|)/(x) ,where [.] denotes the greatest integer function,then

Find the range of f(x)=[abs(sinx)+abs(cosx)] , where [*] denotes the greatest integer function.

Domain (D) and range (R) of f(x)=sin^(-1)(cos^(-1)[x]), where [.] denotes the greatest integer function, is

The range of f(x)=(2+x-[x])/(1-x+[x]) .where [ ] denotes the greatest integer function is

Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer function. Then the

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

f(x)=log(x-[x]) , where [*] denotes the greatest integer function. find the domain of f(x).

ARIHANT MATHS ENGLISH-FUNCTIONS-Exercise For Session 5
  1. f(x)=abs(x-1)+abs(x-2), -1 le x le 3. Find the range of f(x).

    Text Solution

    |

  2. f(x)=log(3)(5+4x-x^(2)). find the range of f(x).

    Text Solution

    |

  3. f(x)=(x^(2)+2x+3)/x . Find the range of f(x).

    Text Solution

    |

  4. f(x)=abs(x-1)+abs(x-2)+abs(x-3) . Find the range of f(x).

    Text Solution

    |

  5. f(x)=cos^-1sqrt(log([x]) ((|x|)/x)) where [.] denotes the greatest int...

    Text Solution

    |

  6. Let f(x)=sqrt([sin 2x] -[cos 2x]) (where I I denotes the greatest inte...

    Text Solution

    |

  7. The range of sin^(-1)[x^2+1/2]+cos^(-1)[x^2-1/2] , where [.] denotes t...

    Text Solution

    |

  8. Range of f(x) =sin^-1(sqrt(x^2+x+1)) is

    Text Solution

    |

  9. f(x)=cos^(-1)(x^(2)/sqrt(1+x^(2)))

    Text Solution

    |

  10. Find the range of f(x)=sqrt(log(cos(sinx)))

    Text Solution

    |

  11. f(x)=(x-1)/(x^(2)-2x+3) Find the range of f(x).

    Text Solution

    |

  12. if:f(x)=(sinx)/(sqrt(1+tan^2x))-(cosx)/(sqrt(1+cot^2x)), then find the...

    Text Solution

    |

  13. Range of f(x)=(tan(pi[x^(2)-x]))/(1+sin(cosx))

    Text Solution

    |

  14. f(x)=e^(x)/([x+1]),x ge 0

    Text Solution

    |

  15. Find the range of f(x)=[abs(sinx)+abs(cosx)], where [*] denotes the gr...

    Text Solution

    |

  16. f(x)=sqrt(-x^(2)+4x-3)+sqrt(sin""pi/2(sin""pi/2(x-1)))

    Text Solution

    |

  17. Find the image of the following sets under the mapping f(x)= x^4 -8x^3...

    Text Solution

    |

  18. Find the domain and range of f(x)=log[ cos|x|+1/2],where [.] denotes...

    Text Solution

    |

  19. Find the domain and range of f(x) = sin^-1 (log [x]) + log (sin^-1 [x...

    Text Solution

    |

  20. Find the domain and range of f(x)=[log(sin^(-1)sqrt(x^2+3x+2))].

    Text Solution

    |