Home
Class 12
MATHS
Find the domain and range of f(x) = sin...

Find the domain and range of `f(x) = sin^-1 (log [x]) + log (sin^-1 [x])`, where [.] denotes the greatest integer function.

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain and range of the function \( f(x) = \sin^{-1}(\log[\lfloor x \rfloor]) + \log(\sin^{-1}[\lfloor x \rfloor]) \), where \([\cdot]\) denotes the greatest integer function, we will break the problem down into manageable steps. ### Step 1: Determine the Domain of \( f(x) \) #### 1.1: Analyze \( f_1(x) = \sin^{-1}(\log[\lfloor x \rfloor]) \) The function \( \sin^{-1}(y) \) is defined for \( -1 \leq y \leq 1 \). Therefore, we need: \[ -1 \leq \log[\lfloor x \rfloor] \leq 1 \] Taking the exponential (antilog) of the inequalities: \[ 10^{-1} \leq [\lfloor x \rfloor] \leq 10^1 \] This simplifies to: \[ 0.1 \leq [\lfloor x \rfloor] \leq 10 \] Since \([\lfloor x \rfloor]\) is an integer, the possible values are: \[ [\lfloor x \rfloor] = 1, 2, \ldots, 10 \] This means: \[ 1 \leq \lfloor x \rfloor \leq 10 \] Thus, the corresponding values of \( x \) are: \[ 1 \leq x < 11 \] #### 1.2: Analyze \( f_2(x) = \log(\sin^{-1}[\lfloor x \rfloor]) \) The function \( \log(y) \) is defined for \( y > 0 \). Therefore, we need: \[ \sin^{-1}[\lfloor x \rfloor] > 0 \] Since \( \sin^{-1}(y) \) is positive for \( y > 0 \), we require: \[ [\lfloor x \rfloor] > 0 \] This means: \[ [\lfloor x \rfloor] \geq 1 \] Thus, the possible values of \([\lfloor x \rfloor]\) remain the same: \[ [\lfloor x \rfloor] = 1, 2, \ldots, 10 \] This again leads to: \[ 1 \leq x < 11 \] ### Step 2: Final Domain of \( f(x) \) The domain of \( f(x) \) is the intersection of the domains of \( f_1(x) \) and \( f_2(x) \): \[ \text{Domain of } f(x) = [1, 11) \] ### Step 3: Determine the Range of \( f(x) \) #### 3.1: Evaluate \( f(x) \) for \( 1 \leq x < 2 \) For \( 1 \leq x < 2 \), \([\lfloor x \rfloor] = 1\): \[ f(x) = \sin^{-1}(\log(1)) + \log(\sin^{-1}(1)) = \sin^{-1}(0) + \log\left(\frac{\pi}{2}\right) = 0 + \log\left(\frac{\pi}{2}\right) \] #### 3.2: Evaluate \( f(x) \) for \( 2 \leq x < 3 \) For \( 2 \leq x < 3 \), \([\lfloor x \rfloor] = 2\): \[ f(x) = \sin^{-1}(\log(2)) + \log(\sin^{-1}(2)) \] However, \(\sin^{-1}(2)\) is not defined, so this case is invalid. Continuing this way, we find that for \( 1 \leq x < 2 \), the only valid output is: \[ f(x) = \log\left(\frac{\pi}{2}\right) \] ### Step 4: Final Range of \( f(x) \) Since the only valid output occurs when \( x \) is in the interval \([1, 2)\): \[ \text{Range of } f(x) = \left\{ \log\left(\frac{\pi}{2}\right) \right\} \] ### Summary - **Domain**: \( [1, 11) \) - **Range**: \( \left\{ \log\left(\frac{\pi}{2}\right) \right\} \)
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 7|5 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|16 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos

Similar Questions

Explore conceptually related problems

f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

Domain (D) and range (R) of f(x)=sin^(-1)(cos^(-1)[x]), where [.] denotes the greatest integer function, is

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

If f(x) = log_([x-1])(|x|)/(x) ,where [.] denotes the greatest integer function,then

If f(x)=[sin^(2) x] ([.] denotes the greatest integer function), then

f(x)=cos^-1sqrt(log_([x]) ((|x|)/x)) where [.] denotes the greatest integer function

If f(x) =[ sin ^(-1)(sin 2x )] (where, [] denotes the greatest integer function ), then

Find the domain and range of the following function: f(x)=log_([x-1])sinx, where [ ] denotes greatest integer function.

f(x)=log(x-[x]) , where [*] denotes the greatest integer function. find the domain of f(x).

Domain of f(x)=log(x^2+5x+6)/([x]-1) where [.] denotes greatest integer function:

ARIHANT MATHS ENGLISH-FUNCTIONS-Exercise For Session 5
  1. f(x)=abs(x-1)+abs(x-2), -1 le x le 3. Find the range of f(x).

    Text Solution

    |

  2. f(x)=log(3)(5+4x-x^(2)). find the range of f(x).

    Text Solution

    |

  3. f(x)=(x^(2)+2x+3)/x . Find the range of f(x).

    Text Solution

    |

  4. f(x)=abs(x-1)+abs(x-2)+abs(x-3) . Find the range of f(x).

    Text Solution

    |

  5. f(x)=cos^-1sqrt(log([x]) ((|x|)/x)) where [.] denotes the greatest int...

    Text Solution

    |

  6. Let f(x)=sqrt([sin 2x] -[cos 2x]) (where I I denotes the greatest inte...

    Text Solution

    |

  7. The range of sin^(-1)[x^2+1/2]+cos^(-1)[x^2-1/2] , where [.] denotes t...

    Text Solution

    |

  8. Range of f(x) =sin^-1(sqrt(x^2+x+1)) is

    Text Solution

    |

  9. f(x)=cos^(-1)(x^(2)/sqrt(1+x^(2)))

    Text Solution

    |

  10. Find the range of f(x)=sqrt(log(cos(sinx)))

    Text Solution

    |

  11. f(x)=(x-1)/(x^(2)-2x+3) Find the range of f(x).

    Text Solution

    |

  12. if:f(x)=(sinx)/(sqrt(1+tan^2x))-(cosx)/(sqrt(1+cot^2x)), then find the...

    Text Solution

    |

  13. Range of f(x)=(tan(pi[x^(2)-x]))/(1+sin(cosx))

    Text Solution

    |

  14. f(x)=e^(x)/([x+1]),x ge 0

    Text Solution

    |

  15. Find the range of f(x)=[abs(sinx)+abs(cosx)], where [*] denotes the gr...

    Text Solution

    |

  16. f(x)=sqrt(-x^(2)+4x-3)+sqrt(sin""pi/2(sin""pi/2(x-1)))

    Text Solution

    |

  17. Find the image of the following sets under the mapping f(x)= x^4 -8x^3...

    Text Solution

    |

  18. Find the domain and range of f(x)=log[ cos|x|+1/2],where [.] denotes...

    Text Solution

    |

  19. Find the domain and range of f(x) = sin^-1 (log [x]) + log (sin^-1 [x...

    Text Solution

    |

  20. Find the domain and range of f(x)=[log(sin^(-1)sqrt(x^2+3x+2))].

    Text Solution

    |