Home
Class 12
MATHS
Find the domain and range of f(x)=[log(s...

Find the domain and range of `f(x)=[log(sin^(-1)sqrt(x^2+3x+2))]`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain and range of the function \( f(x) = \log(\sin^{-1}(\sqrt{x^2 + 3x + 2})) \), we will follow these steps: ### Step 1: Determine the expression inside the logarithm The function involves a logarithm, which is defined only for positive values. Therefore, we need to ensure that: \[ \sin^{-1}(\sqrt{x^2 + 3x + 2}) > 0 \] This implies: \[ \sqrt{x^2 + 3x + 2} > 0 \] ### Step 2: Analyze the square root The expression inside the square root is: \[ x^2 + 3x + 2 \] We can factor this quadratic: \[ x^2 + 3x + 2 = (x + 1)(x + 2) \] To find where this expression is greater than zero, we need to find the roots: \[ x + 1 = 0 \quad \Rightarrow \quad x = -1 \] \[ x + 2 = 0 \quad \Rightarrow \quad x = -2 \] Next, we analyze the intervals determined by these roots: \( (-\infty, -2) \), \( (-2, -1) \), and \( (-1, \infty) \). ### Step 3: Test intervals for positivity 1. For \( x < -2 \) (e.g., \( x = -3 \)): \[ (-3 + 1)(-3 + 2) = (-2)(-1) = 2 > 0 \] 2. For \( -2 < x < -1 \) (e.g., \( x = -1.5 \)): \[ (-1.5 + 1)(-1.5 + 2) = (-0.5)(0.5) = -0.25 < 0 \] 3. For \( x > -1 \) (e.g., \( x = 0 \)): \[ (0 + 1)(0 + 2) = (1)(2) = 2 > 0 \] Thus, \( x^2 + 3x + 2 > 0 \) for \( x \in (-\infty, -2) \cup (-1, \infty) \). ### Step 4: Ensure the argument of sine inverse is valid Next, we need to ensure that: \[ \sqrt{x^2 + 3x + 2} \leq 1 \] Squaring both sides gives: \[ x^2 + 3x + 2 \leq 1 \] This simplifies to: \[ x^2 + 3x + 1 \leq 0 \] Now, we find the roots of the quadratic \( x^2 + 3x + 1 = 0 \) using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-3 \pm \sqrt{3^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} = \frac{-3 \pm \sqrt{5}}{2} \] Let \( \alpha = \frac{-3 - \sqrt{5}}{2} \) and \( \beta = \frac{-3 + \sqrt{5}}{2} \). ### Step 5: Analyze the intervals for the quadratic inequality The quadratic \( x^2 + 3x + 1 \) opens upwards, so it is less than or equal to zero between its roots: \[ \alpha \leq x \leq \beta \] ### Step 6: Find the intersection of intervals The domain of \( f(x) \) is the intersection of the intervals: 1. From \( x^2 + 3x + 2 > 0 \): \( (-\infty, -2) \cup (-1, \infty) \) 2. From \( x^2 + 3x + 1 \leq 0 \): \( \left[\frac{-3 - \sqrt{5}}{2}, \frac{-3 + \sqrt{5}}{2}\right] \) The common portion of these intervals gives us the domain: \[ \text{Domain: } \left[\frac{-3 - \sqrt{5}}{2}, -2\right) \cup (-1, \frac{-3 + \sqrt{5}}{2}] \] ### Step 7: Determine the range of \( f(x) \) Since \( \sin^{-1}(y) \) is defined for \( 0 < y \leq 1 \), and \( \log(z) \) is defined for \( z > 0 \), we have: \[ 0 < \sin^{-1}(\sqrt{x^2 + 3x + 2}) \leq \frac{\pi}{2} \] Taking the logarithm gives: \[ -\infty < \log(\sin^{-1}(\sqrt{x^2 + 3x + 2})) \leq 0 \] Thus, the range of \( f(x) \) is: \[ \text{Range: } (-\infty, 0] \] ### Final Answer - **Domain:** \( \left[\frac{-3 - \sqrt{5}}{2}, -2\right) \cup (-1, \frac{-3 + \sqrt{5}}{2}] \) - **Range:** \( (-\infty, 0] \)
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 7|5 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|16 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos

Similar Questions

Explore conceptually related problems

Find the domain and range of f(x)=(1)/(2-sin3x).

Find the domain and range of f(x)=(1)/(sqrt(x-2))

Find the domain and range of f(x)=sqrt(x^2-3x+2)

Find the domain and range of f(x)=sqrt(3-2x-x^2)

Find the domain and range of f(x)=sqrt(3-2x-x^2)

Find the domain and range of f(x)=(x)/(1+x^(2))

Find the domain and range of f(x)=sqrt(4-16x^(2)) .

Find the domain and the range of f(x)=sqrt(x^2-3x.)

Find the domain and range of f(x)=cos^(-1)sqrt((log)_([x])((|x|)/x))

Find the domain and range of the function f(x)="sin"^(-1)(x^(2))/(2)

ARIHANT MATHS ENGLISH-FUNCTIONS-Exercise For Session 5
  1. f(x)=abs(x-1)+abs(x-2), -1 le x le 3. Find the range of f(x).

    Text Solution

    |

  2. f(x)=log(3)(5+4x-x^(2)). find the range of f(x).

    Text Solution

    |

  3. f(x)=(x^(2)+2x+3)/x . Find the range of f(x).

    Text Solution

    |

  4. f(x)=abs(x-1)+abs(x-2)+abs(x-3) . Find the range of f(x).

    Text Solution

    |

  5. f(x)=cos^-1sqrt(log([x]) ((|x|)/x)) where [.] denotes the greatest int...

    Text Solution

    |

  6. Let f(x)=sqrt([sin 2x] -[cos 2x]) (where I I denotes the greatest inte...

    Text Solution

    |

  7. The range of sin^(-1)[x^2+1/2]+cos^(-1)[x^2-1/2] , where [.] denotes t...

    Text Solution

    |

  8. Range of f(x) =sin^-1(sqrt(x^2+x+1)) is

    Text Solution

    |

  9. f(x)=cos^(-1)(x^(2)/sqrt(1+x^(2)))

    Text Solution

    |

  10. Find the range of f(x)=sqrt(log(cos(sinx)))

    Text Solution

    |

  11. f(x)=(x-1)/(x^(2)-2x+3) Find the range of f(x).

    Text Solution

    |

  12. if:f(x)=(sinx)/(sqrt(1+tan^2x))-(cosx)/(sqrt(1+cot^2x)), then find the...

    Text Solution

    |

  13. Range of f(x)=(tan(pi[x^(2)-x]))/(1+sin(cosx))

    Text Solution

    |

  14. f(x)=e^(x)/([x+1]),x ge 0

    Text Solution

    |

  15. Find the range of f(x)=[abs(sinx)+abs(cosx)], where [*] denotes the gr...

    Text Solution

    |

  16. f(x)=sqrt(-x^(2)+4x-3)+sqrt(sin""pi/2(sin""pi/2(x-1)))

    Text Solution

    |

  17. Find the image of the following sets under the mapping f(x)= x^4 -8x^3...

    Text Solution

    |

  18. Find the domain and range of f(x)=log[ cos|x|+1/2],where [.] denotes...

    Text Solution

    |

  19. Find the domain and range of f(x) = sin^-1 (log [x]) + log (sin^-1 [x...

    Text Solution

    |

  20. Find the domain and range of f(x)=[log(sin^(-1)sqrt(x^2+3x+2))].

    Text Solution

    |