Home
Class 12
MATHS
f(x)={{:(x-1",", -1 le xle 0),(x^(2)",",...

`f(x)={{:(x-1",", -1 le xle 0),(x^(2)",",0 lt x le 1):}` and g(x)=sinx. Find `h(x)=f(abs(g(x)))+abs(f(g(x))).`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( h(x) = f(\lvert g(x) \rvert) + \lvert f(g(x)) \rvert \) where \( f(x) \) and \( g(x) \) are defined as follows: - \( f(x) = \begin{cases} x - 1 & \text{if } -1 \leq x \leq 0 \\ x^2 & \text{if } 0 < x \leq 1 \end{cases} \) - \( g(x) = \sin x \) ### Step-by-Step Solution: 1. **Determine \( g(x) = \sin x \)**: - The sine function oscillates between -1 and 1 for all real \( x \). 2. **Find \( \lvert g(x) \rvert = \lvert \sin x \rvert \)**: - Since \( \sin x \) can take negative values, \( \lvert \sin x \rvert \) will always be non-negative and will range from 0 to 1. 3. **Evaluate \( f(\lvert g(x) \rvert) = f(\lvert \sin x \rvert) \)**: - Since \( \lvert \sin x \rvert \) is always between 0 and 1, we will use the second case of \( f(x) \): \[ f(\lvert \sin x \rvert) = (\lvert \sin x \rvert)^2 \] 4. **Calculate \( \lvert f(g(x)) \rvert = \lvert f(\sin x) \rvert \)**: - We need to evaluate \( f(\sin x) \) based on the value of \( \sin x \): - If \( -1 \leq \sin x \leq 0 \): \[ f(\sin x) = \sin x - 1 \] - Here, \( \lvert f(\sin x) \rvert = \lvert \sin x - 1 \rvert = 1 - \sin x \) (since \( \sin x \) is negative or zero). - If \( 0 < \sin x \leq 1 \): \[ f(\sin x) = (\sin x)^2 \] - Here, \( \lvert f(\sin x) \rvert = (\sin x)^2 \). 5. **Combine the results to find \( h(x) \)**: - For \( -1 \leq \sin x \leq 0 \): \[ h(x) = (\lvert \sin x \rvert)^2 + (1 - \sin x) = \sin^2 x + 1 - \sin x \] - For \( 0 < \sin x \leq 1 \): \[ h(x) = (\lvert \sin x \rvert)^2 + (\sin x)^2 = 2\sin^2 x \] 6. **Final expression for \( h(x) \)**: - Thus, we can summarize \( h(x) \) as: \[ h(x) = \begin{cases} \sin^2 x + 1 - \sin x & \text{if } -1 \leq \sin x \leq 0 \\ 2\sin^2 x & \text{if } 0 < \sin x \leq 1 \end{cases} \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 11|2 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 12|4 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 9|10 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos

Similar Questions

Explore conceptually related problems

f(x)={(x-1",",-1 le x le 0),(x^(2)",",0le x le 1):} and g(x)=sinx Consider the functions h_(1)(x)=f(|g(x)|) and h_(2)(x)=|f(g(x))|. Which of the following is not true about h_(2)(x) ?

f(x)={(x-1",",-1 le x le 0),(x^(2)",",0le x le 1):} and g(x)=sinx Consider the functions h_(1)(x)=f(|g(x)|) and h_(2)(x)=|f(g(x))|. then

Let f(x)={{:(1+x",", 0 le x le 2),(3-x"," ,2 lt x le 3):} find (fof) (x).

Let f(x) be defined on [-2,2] and be given by f(x)={(-1",",-2 le x le 0),(x-1",",0 lt x le 2):} and g(x)=f(|x|) +|f(x)| . Then find g(x) .

If f(x)={{:(,x^(2)+1,0 le x lt 1),(,-3x+5, 1 le x le 2):}

Let f(x) ={:{(x, "for", 0 le x lt1),( 3-x,"for", 1 le x le2):} Then f(x) is

Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f ^(-1) (x) is discontinous at x=

If f (x)= [{:(e ^(x-1),,, 0 le x le 1),( x+1-{x},', 1 lt x lt 3 ):}and g (x) =x ^(2) -ax +b such that f (x)g (x) is continous [0,3] then the ordered pair (a,b) is (where {.} denotes fractional part function):

If f(x) = {{:(e ^(x),,"," 0 le x lt 1 ,, ""), (2- e^(x - 1),,"," 1 lt x le 2,, and g(x) = int_(0)^(x) f(t ) dt","),( x- e,,"," 2lt x le 3 ,, ""):} x in [ 1, 3 ] , then

Consider two functions f(x)={([x]",",-2le x le -1),(|x|+1",",-1 lt x le 2):} and g(x)={([x]",",-pi le x lt 0),(sinx",",0le x le pi):} where [.] denotes the greatest integer function. The number of integral points in the range of g(f(x)) is