Home
Class 12
MATHS
Let f(x)=abs(x-1)+abs(x-2)+abs(x-3)+abs(...

Let `f(x)=abs(x-1)+abs(x-2)+abs(x-3)+abs(x-4),` then

A

least value of f(x) is 4

B

least value is not attained at unique point

C

the number of integral solution of f(x)=4 is 2

D

the value of `(f(pi-1)+f(e))/(2f(12/5))` is 1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) = |x - 1| + |x - 2| + |x - 3| + |x - 4| \). This function consists of absolute values, which means it will behave differently depending on the value of \( x \). ### Step-by-Step Solution: 1. **Identify Critical Points**: The critical points where the expression inside the absolute values changes are \( x = 1, 2, 3, 4 \). We will evaluate the function in the intervals defined by these points: \( (-\infty, 1) \), \( [1, 2) \), \( [2, 3) \), \( [3, 4) \), and \( [4, \infty) \). 2. **Evaluate \( f(x) \) in Each Interval**: - **For \( x < 1 \)**: \[ f(x) = -(x - 1) - (x - 2) - (x - 3) - (x - 4) = -4x + 10 \] - **For \( 1 \leq x < 2 \)**: \[ f(x) = (x - 1) - (x - 2) - (x - 3) - (x - 4) = -2x + 8 \] - **For \( 2 \leq x < 3 \)**: \[ f(x) = (x - 1) + (x - 2) - (x - 3) - (x - 4) = 2x - 6 \] - **For \( 3 \leq x < 4 \)**: \[ f(x) = (x - 1) + (x - 2) + (x - 3) - (x - 4) = 4x - 10 \] - **For \( x \geq 4 \)**: \[ f(x) = (x - 1) + (x - 2) + (x - 3) + (x - 4) = 4x - 10 \] 3. **Calculate Values at Critical Points**: - \( f(1) = |1 - 1| + |1 - 2| + |1 - 3| + |1 - 4| = 0 + 1 + 2 + 3 = 6 \) - \( f(2) = |2 - 1| + |2 - 2| + |2 - 3| + |2 - 4| = 1 + 0 + 1 + 2 = 4 \) - \( f(3) = |3 - 1| + |3 - 2| + |3 - 3| + |3 - 4| = 2 + 1 + 0 + 1 = 4 \) - \( f(4) = |4 - 1| + |4 - 2| + |4 - 3| + |4 - 4| = 3 + 2 + 1 + 0 = 6 \) 4. **Determine the Minimum Value**: From the calculations: - The minimum value of \( f(x) \) occurs at \( x = 2 \) and \( x = 3 \), where \( f(x) = 4 \). 5. **Check the Behavior of \( f(x) \)**: - For \( x < 1 \): \( f(x) \) is decreasing. - For \( 1 < x < 2 \): \( f(x) \) is decreasing. - For \( 2 < x < 3 \): \( f(x) \) is increasing. - For \( 3 < x < 4 \): \( f(x) \) is increasing. - For \( x > 4 \): \( f(x) \) is increasing. ### Conclusion: - The least value of \( f(x) \) is \( 4 \), which occurs at the points \( x = 2 \) and \( x = 3 \).
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|11 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|25 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|72 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos

Similar Questions

Explore conceptually related problems

f(x)=abs(x-1)+abs(x-2)+abs(x-3) . Find the range of f(x).

For abs(x-1)+abs(x-2)+abs(x-3)le6 , x belongs to

f(x)=1/abs(x), g(x)=sqrt(x^(-2))

Solve abs(x/(x-1))+abs(x)=x^(2)/abs(x-1) .

If f(x)=abs(1/(abs(absx-2))+1/(abs(absx-3))) and g(x)=sin^(-1)(2sqrtx) , then f(x)=g(x) has

Solve the following inequalities for real values of x: abs(x-1)+abs(2x-3)=abs(3x-4)

f(x)=abs(x-1)+abs(x-2), -1 le x le 3 . Find the range of f(x).

Let g(t)=abs(t-1)-abs(t)+abs(t+1),forall " " t in R. Find f(x)=max{g(t):-3/2 le t le x},forall x in ((-3)/2,infty) .]

Range of the function f(x)=sqrt(abs(sin^(-1)abs(sinx))-abs(cos^(-1)abs(cosx))) is

Find the domain of function f(x)=(1)/(abs(x-1)+abs(7-x)-6) where [*] denotes the greatest integral function .

ARIHANT MATHS ENGLISH-FUNCTIONS-Exercise (More Than One Correct Option Type Questions)
  1. If the following functions are defined from [-1,1]to[-1,1], select tho...

    Text Solution

    |

  2. Let f(x)={{:(x^(2)-4x+3",", x lt 3),(x-4",", x ge 3):} and g(x)={{:(...

    Text Solution

    |

  3. f(x)=x^2-2a x+a(a+1),f:[a ,oo)vec[a ,oo)dot If one of the solution of ...

    Text Solution

    |

  4. The function 'g' defined by g(x)=sin(sin^(-1){sqrt(x)}+cos (sin^(-1){s...

    Text Solution

    |

  5. The graph of f:R rarr R defined by y=f(x) is symmetric with respect to...

    Text Solution

    |

  6. Let f be the continuous and differentiable function such that f(x)=f(2...

    Text Solution

    |

  7. Let f(x)=abs(x-1)+abs(x-2)+abs(x-3)+abs(x-4), then

    Text Solution

    |

  8. Let A={1,2,3,4,5}, B={1,2,3,4} and f:A rarr B is a function, then

    Text Solution

    |

  9. If f(x) is a differntiable function satisfying the condition f(100x)=x...

    Text Solution

    |

  10. If [x] denotes the greatest integer function then the extreme values o...

    Text Solution

    |

  11. If f(x) is a polynomial of degree n such that f(0)=0 , f(x)=1/2,......

    Text Solution

    |

  12. Let f: R->R be a function defined by f(x+1)=(f(x)-5)/(f(x)-3)AAx in R...

    Text Solution

    |

  13. Let f(x)=1-x-x^3.Find all real values of x satisfying the inequality,...

    Text Solution

    |

  14. If a function satisfies (x-y)f(x+y)-(x+y)f(x-y)=2(x^2 y-y^3) AA x, y i...

    Text Solution

    |

  15. If the fundamental period of function f(x)=sinx+cos(sqrt(4-a^(2)))x "...

    Text Solution

    |

  16. Let f (x) be a real vaued continuous function such that f (0) =1/2 a...

    Text Solution

    |

  17. if f(g(x)) is one-one function, then

    Text Solution

    |

  18. Which of the following functions have their range equal to R(the set o...

    Text Solution

    |

  19. Which of the following pairs of function are identical?

    Text Solution

    |

  20. Let f:R rarr R defined by f(x)=cos^(-1)(-{-x}), where {x} denotes fra...

    Text Solution

    |